Publication: Transcriptome analysis of mammary tissues reveals complex patterns of transporter gene expression during pregnancy and lactation
Issued Date
2010-01-01
Resource Type
ISSN
10958355
10656995
10656995
Other identifier(s)
2-s2.0-77951923387
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Cell Biology International. Vol.34, No.1 (2010), 67-74
Suggested Citation
Utchariya Anantamongkol, Narattaphol Charoenphandhu, Kannikar Wongdee, Jarinthorn Teerapornpuntakit, Tuangporn Suthiphongchai, Siriwan Prapong, Nateetip Krishnamra Transcriptome analysis of mammary tissues reveals complex patterns of transporter gene expression during pregnancy and lactation. Cell Biology International. Vol.34, No.1 (2010), 67-74. doi:10.1042/CBI20090023 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/28827
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Transcriptome analysis of mammary tissues reveals complex patterns of transporter gene expression during pregnancy and lactation
Other Contributor(s)
Abstract
As a complex Ca2+-rich fluid mixture of water, casein, lactose and several ions, milk secretion requires a number of unknown transporters, which can be identified by a genome-wide microarray study in mammary tissues of lactating animals. Ca2+ was reported to be secreted across mammary epithelial cells through the transcellular pathway, presumably involving TRPC (canonical transient receptor potential) channels. In the present study, we have used quantitative real-time PCR to demonstrate that the human mammary cell line MCF-7, as well as rat mammary tissues from pregnant and lactating rats, expressed TRPC1, TRPC5 and TRPC6. Expression of TRPC1, TRPC5 and TRPC7 were markedly up-regulated, whereas that of TRPC3 and TRPC4 was down-regulated in the early lactating period. To further identify other transporter genes affected by lactation, a highly sensitive Illumina microarray featuring Bead Array technology was performed on RNA samples from mammary tissues of lactating rats. We found that, of the 384 transcripts changed during lactation, 31 transcripts were involved in the transport of water and electrolytes, such as Ca2+, Na+, K+, Cl-, I-, Fe2+, sulfate and phosphate. The present study, therefore, provides information for further investigation of the mechanism of lactationinduced transport adaptation in mammary epithelial cells. © The Author(s) Journal compilation. © 2010 Portland Press Ltd.