Publication:
Beach volleyball serve type recognition

dc.contributor.authorL. Ponce Cuspineraen_US
dc.contributor.authorSakura Uetsujien_US
dc.contributor.authorF. J.Ordonez Moralesen_US
dc.contributor.authorDaniel Roggenen_US
dc.contributor.otherUniversity of Sussexen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-11T02:37:36Z
dc.date.accessioned2019-03-14T08:04:30Z
dc.date.available2018-12-11T02:37:36Z
dc.date.available2019-03-14T08:04:30Z
dc.date.issued2016-09-12en_US
dc.description.abstract© 2016 ACM. We present results on beach volleyball serve recognition and classification from a wrist-worn gyroscope deployed with semi-professional beach volleyball players. We trained a template-based recognition system based on a Warping Longest Common Subsequence algorithm to spot serves, and potentially distinguish among 4 common serve types. This shows the potential of wearable technologies in beach volleyball, which could offer precise sport analytics.en_US
dc.identifier.citationInternational Symposium on Wearable Computers, Digest of Papers. Vol.12-16-September-2016, (2016), 44-45en_US
dc.identifier.doi10.1145/2971763.2971781en_US
dc.identifier.other2-s2.0-84989295869en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43447
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84989295869&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleBeach volleyball serve type recognitionen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84989295869&origin=inwarden_US

Files

Collections