Publication:
A new approach to evaluate regression models during validation of bioanalytical assays

dc.contributor.authorT. Singtorojen_US
dc.contributor.authorJ. Tarningen_US
dc.contributor.authorA. Annerbergen_US
dc.contributor.authorM. Ashtonen_US
dc.contributor.authorY. Bergqvisten_US
dc.contributor.authorN. J. Whiteen_US
dc.contributor.authorN. Lindegardhen_US
dc.contributor.authorN. P.J. Dayen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherGoteborg University, Sahlgrenska Academyen_US
dc.contributor.otherHogskolan Dalarnaen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.date.accessioned2018-08-20T06:52:05Z
dc.date.available2018-08-20T06:52:05Z
dc.date.issued2006-04-11en_US
dc.description.abstractThe quality of bioanalytical data is highly dependent on using an appropriate regression model for calibration curves. Non-weighted linear regression has traditionally been used but is not necessarily the optimal model. Bioanalytical assays generally benefit from using either data transformation and/or weighting since variance normally increases with concentration. A data set with calibrators ranging from 9 to 10 000 ng/mL was used to compare a new approach with the traditional approach for selecting an optimal regression model. The new approach used a combination of relative residuals at each calibration level together with precision and accuracy of independent quality control samples over 4 days to select and justify the best regression model. The results showed that log-log transformation without weighting was the simplest model to fit the calibration data and ensure good predictability for this data set. © 2005 Elsevier B.V. All rights reserved.en_US
dc.identifier.citationJournal of Pharmaceutical and Biomedical Analysis. Vol.41, No.1 (2006), 219-227en_US
dc.identifier.doi10.1016/j.jpba.2005.11.006en_US
dc.identifier.issn07317085en_US
dc.identifier.other2-s2.0-33645080172en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/23050
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645080172&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemistryen_US
dc.subjectPharmacology, Toxicology and Pharmaceuticsen_US
dc.titleA new approach to evaluate regression models during validation of bioanalytical assaysen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645080172&origin=inwarden_US

Files

Collections