Publication: A new approach to evaluate regression models during validation of bioanalytical assays
dc.contributor.author | T. Singtoroj | en_US |
dc.contributor.author | J. Tarning | en_US |
dc.contributor.author | A. Annerberg | en_US |
dc.contributor.author | M. Ashton | en_US |
dc.contributor.author | Y. Bergqvist | en_US |
dc.contributor.author | N. J. White | en_US |
dc.contributor.author | N. Lindegardh | en_US |
dc.contributor.author | N. P.J. Day | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Goteborg University, Sahlgrenska Academy | en_US |
dc.contributor.other | Hogskolan Dalarna | en_US |
dc.contributor.other | Nuffield Department of Clinical Medicine | en_US |
dc.date.accessioned | 2018-08-20T06:52:05Z | |
dc.date.available | 2018-08-20T06:52:05Z | |
dc.date.issued | 2006-04-11 | en_US |
dc.description.abstract | The quality of bioanalytical data is highly dependent on using an appropriate regression model for calibration curves. Non-weighted linear regression has traditionally been used but is not necessarily the optimal model. Bioanalytical assays generally benefit from using either data transformation and/or weighting since variance normally increases with concentration. A data set with calibrators ranging from 9 to 10 000 ng/mL was used to compare a new approach with the traditional approach for selecting an optimal regression model. The new approach used a combination of relative residuals at each calibration level together with precision and accuracy of independent quality control samples over 4 days to select and justify the best regression model. The results showed that log-log transformation without weighting was the simplest model to fit the calibration data and ensure good predictability for this data set. © 2005 Elsevier B.V. All rights reserved. | en_US |
dc.identifier.citation | Journal of Pharmaceutical and Biomedical Analysis. Vol.41, No.1 (2006), 219-227 | en_US |
dc.identifier.doi | 10.1016/j.jpba.2005.11.006 | en_US |
dc.identifier.issn | 07317085 | en_US |
dc.identifier.other | 2-s2.0-33645080172 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/23050 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645080172&origin=inward | en_US |
dc.subject | Biochemistry, Genetics and Molecular Biology | en_US |
dc.subject | Chemistry | en_US |
dc.subject | Pharmacology, Toxicology and Pharmaceutics | en_US |
dc.title | A new approach to evaluate regression models during validation of bioanalytical assays | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33645080172&origin=inward | en_US |