Publication:
Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision

dc.contributor.authorJames A. Watsonen_US
dc.contributor.authorCarolyne M. Ndilaen_US
dc.contributor.authorSophie Uyogaen_US
dc.contributor.authorAlexander Machariaen_US
dc.contributor.authorGideon Nyutuen_US
dc.contributor.authorShebe Mohammeden_US
dc.contributor.authorCaroline Ngetsaen_US
dc.contributor.authorNeema Mturien_US
dc.contributor.authorNorbert Peshuen_US
dc.contributor.authorBenjamin Tsofaen_US
dc.contributor.authorKirk Rocketten_US
dc.contributor.authorStije Leopolden_US
dc.contributor.authorHugh Kingstonen_US
dc.contributor.authorElizabeth C. Georgeen_US
dc.contributor.authorKathryn Maitlanden_US
dc.contributor.authorNicholas P.J. Dayen_US
dc.contributor.authorArjen M. Dondorpen_US
dc.contributor.authorPhilip Bejonen_US
dc.contributor.authorThomas Williamsen_US
dc.contributor.authorChris C. Holmesen_US
dc.contributor.authorNicholas J. Whiteen_US
dc.contributor.otherFaculty of Tropical Medicine, Mahidol Universityen_US
dc.contributor.otherThe Wellcome Centre for Human Geneticsen_US
dc.contributor.otherCentre for Geographic Medicine Researchen_US
dc.contributor.otherUniversity of Oxforden_US
dc.contributor.otherUniversity College Londonen_US
dc.contributor.otherImperial College Londonen_US
dc.contributor.otherNuffield Department of Medicineen_US
dc.contributor.otherWellcome Sanger Instituteen_US
dc.date.accessioned2022-08-04T08:13:56Z
dc.date.available2022-08-04T08:13:56Z
dc.date.issued2021-01-01en_US
dc.description.abstractSevere falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies.en_US
dc.identifier.citationeLife. Vol.10, (2021)en_US
dc.identifier.doi10.7554/ELIFE.69698en_US
dc.identifier.issn2050084Xen_US
dc.identifier.other2-s2.0-85111149032en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76354
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111149032&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectImmunology and Microbiologyen_US
dc.subjectNeuroscienceen_US
dc.titleImproving statistical power in severe malaria genetic association studies by augmenting phenotypic precisionen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111149032&origin=inwarden_US

Files

Collections