Publication: Optimization and Kinetic Study of Phosphorus Dissolution from Primary Settled-Nightsoil Sludge
| dc.contributor.author | Wanida Pimpeach | |
| dc.contributor.author | Withida Patthanaissaranukool | |
| dc.contributor.author | Chongchin Polprasert | |
| dc.contributor.author | Supawadee Polprasert | |
| dc.contributor.author | Suwisa Mahasandana | |
| dc.contributor.author | Bunyarit Panyapinyopol | |
| dc.date.accessioned | 2026-01-29T02:50:22Z | |
| dc.date.available | 2026-01-29T02:50:22Z | |
| dc.date.created | 2026-01-29 | |
| dc.date.issued | 2023 | |
| dc.description.abstract | In this study, chemical extraction using different acid concentrations, solids concentrations, and reaction time with subsequent interactions mechanism were carried out to evaluate the potential of phosphorus (P) recovery from primary settled-nightsoil sludge (PSNS). The response surface methodology (RSM) with Box-Behnken experimental design and one-way ANOVA analysis were also employed to establish optimal P leaching conditions. The extraction efficiency relied mainly on acid and solids concentration. The second-order polynomial model was successfully developed for extracting process designs. Approximately 93% of P could effectively be extracted from PSNS of 20,000 mg/L with 0.5 M of H2SO4 at reaction time of 45 min (optimum condition). Kinetic studies showed that the pseudo-second order was fit to describe leaching of P and metals. Moreover, the rate of kinetic constants (k2) of the P, Fe, Mg, and Ca under optimum condition were found to be 0.1607, 0.1099, 0.0317, and 0.0053 g/mg·min, respectively. The 99% leaching of maximum extracted P concentration at the equilibrium (9.6673 mg/g) took place in less than one hour. The findings of a suitable simple and low-cost method P dissolution from PSNS not only provides understanding of leaching kinetics, but also helps to pave a way of recovering P from a renewable resource in the field of waste utilization. | |
| dc.format.extent | 11 Page | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Environment and Natural Resources Journal. Vol. 21, No.2 (Mar - Apr 2023), 102-112 | |
| dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/123456789/114084 | |
| dc.language.iso | eng | |
| dc.rights | ผลงานนี้เป็นลิขสิทธิ์ของมหาวิทยาลัยมหิดล ขอสงวนไว้สำหรับเพื่อการศึกษาเท่านั้น ต้องอ้างอิงแหล่งที่มา ห้ามดัดแปลงเนื้อหา และห้ามนำไปใช้เพื่อการค้า | |
| dc.rights.holder | Faculty of Environment and Resource Studies. Mahidol University | |
| dc.subject | Co-solution of metals | |
| dc.subject | Interactions mechanism | |
| dc.subject | Phosphorus recovery | |
| dc.subject | Septage sludge | |
| dc.subject | Sludge extraction | |
| dc.subject | Waste management | |
| dc.subject | Environment and Natural Resources Journal | |
| dc.subject | วารสารสิ่งแวดล้อมและทรัพยากรธรรมชาติ | |
| dc.title | Optimization and Kinetic Study of Phosphorus Dissolution from Primary Settled-Nightsoil Sludge | |
| dc.type | Article | |
| dcterms.accessRights | open access | |
| dspace.entity.type | Publication | |
| mods.location.url | https://ph02.tci-thaijo.org/index.php/ennrj/article/view/248379 | |
| oaire.citation.endPage | 112 | |
| oaire.citation.issue | 2 | |
| oaire.citation.startPage | 102 | |
| oaire.citation.title | Environment and Natural Resources Journal | |
| oaire.citation.volume | 21 | |
| oairecerif.author.affiliation | Mahidol University. Faculty of Public Health. Department of Sanitary Engineering | |
| oairecerif.author.affiliation | Mahidol University. Faculty of Public Health. Department of Environmental Health Sciences |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ph-ar-bunyarit-2023.pdf
- Size:
- 647.98 KB
- Format:
- Adobe Portable Document Format
