Publication:
Strongly restricted permutations and tiling with fences

dc.contributor.authorKenneth Edwardsen_US
dc.contributor.authorMichael A. Allenen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-11-23T10:26:26Z
dc.date.available2018-11-23T10:26:26Z
dc.date.issued2015-01-01en_US
dc.description.abstract© 2015 Elsevier B.V. We identify bijections between strongly restricted permutations of {1,2,⋯,n} of the form π(i)-iεW, where W is any finite set of integers which is independent of i and n, and tilings of an n-board (a linear array of n square cells of unit width) using square tiles and (12,g)-fence tiles where gε<sup>Z+</sup>. A (12,g)-fence is composed of two pieces of width 12 separated by a gap of width g. The tiling approach allows us to obtain the recurrence relation for the number of permutations when W={-1,<sup>d1</sup>,⋯,<sup>dr</sup>} where <sup>dr</sup>>0 and the remaining <sup>dl</sup> are non-negative integers which are independent of i and n. This is a generalization of a previous result. Terms in this recurrence relation, along with terms in other recurrences we obtain for more complicated cases, can be identified with certain groupings of interlocking tiles. The ease of counting tilings gives rise to a straightforward way of obtaining identities concerning the number of occurrences of patterns such as fixed points or excedances in restricted permutations. We also use the tilings to obtain the possible permutation cycles.en_US
dc.identifier.citationDiscrete Applied Mathematics. Vol.187, (2015), 82-90en_US
dc.identifier.doi10.1016/j.dam.2015.02.004en_US
dc.identifier.issn0166218Xen_US
dc.identifier.other2-s2.0-84928205201en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/36201
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84928205201&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleStrongly restricted permutations and tiling with fencesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84928205201&origin=inwarden_US

Files

Collections