Publication:
Incorporating human mobility data improves forecasts of Dengue fever in Thailand

dc.contributor.authorMathew V. Kiangen_US
dc.contributor.authorMauricio Santillanaen_US
dc.contributor.authorJarvis T. Chenen_US
dc.contributor.authorJukka Pekka Onnelaen_US
dc.contributor.authorNancy Kriegeren_US
dc.contributor.authorKenth Engø-Monsenen_US
dc.contributor.authorNattwut Ekapiraten_US
dc.contributor.authorDarin Areechokchaien_US
dc.contributor.authorPreecha Prempreeen_US
dc.contributor.authorRichard J. Maudeen_US
dc.contributor.authorCaroline O. Buckeeen_US
dc.contributor.otherTelenor ASAen_US
dc.contributor.otherHarvard T.H. Chan School of Public Healthen_US
dc.contributor.otherChildren's Hospital Bostonen_US
dc.contributor.otherThailand Ministry of Public Healthen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherStanford Universityen_US
dc.contributor.otherNuffield Department of Medicineen_US
dc.contributor.otherHarvard Medical Schoolen_US
dc.date.accessioned2022-08-04T11:39:20Z
dc.date.available2022-08-04T11:39:20Z
dc.date.issued2021-12-01en_US
dc.description.abstractOver 390 million people worldwide are infected with dengue fever each year. In the absence of an effective vaccine for general use, national control programs must rely on hospital readiness and targeted vector control to prepare for epidemics, so accurate forecasting remains an important goal. Many dengue forecasting approaches have used environmental data linked to mosquito ecology to predict when epidemics will occur, but these have had mixed results. Conversely, human mobility, an important driver in the spatial spread of infection, is often ignored. Here we compare time-series forecasts of dengue fever in Thailand, integrating epidemiological data with mobility models generated from mobile phone data. We show that geographically-distant provinces strongly connected by human travel have more highly correlated dengue incidence than weakly connected provinces of the same distance, and that incorporating mobility data improves traditional time-series forecasting approaches. Notably, no single model or class of model always outperformed others. We propose an adaptive, mosaic forecasting approach for early warning systems.en_US
dc.identifier.citationScientific Reports. Vol.11, No.1 (2021)en_US
dc.identifier.doi10.1038/s41598-020-79438-0en_US
dc.identifier.issn20452322en_US
dc.identifier.other2-s2.0-85099342923en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/79278
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099342923&origin=inwarden_US
dc.subjectMultidisciplinaryen_US
dc.titleIncorporating human mobility data improves forecasts of Dengue fever in Thailanden_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099342923&origin=inwarden_US

Files

Collections