Publication:
The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia

dc.contributor.authorJingwei Simen_US
dc.contributor.authorAndrew S. Cowburnen_US
dc.contributor.authorAsis Palazonen_US
dc.contributor.authorBasetti Madhuen_US
dc.contributor.authorPetros A. Tyrakisen_US
dc.contributor.authorDavid Macíasen_US
dc.contributor.authorDavid M. Bargielaen_US
dc.contributor.authorSandra Pietschen_US
dc.contributor.authorMichael Grallaen_US
dc.contributor.authorColin E. Evansen_US
dc.contributor.authorThaksaon Kittipassornen_US
dc.contributor.authorYu C.J. Cheyen_US
dc.contributor.authorCristina M. Brancoen_US
dc.contributor.authorHelene Rundqvisten_US
dc.contributor.authorDaniel J. Peeten_US
dc.contributor.authorRandall S. Johnsonen_US
dc.contributor.otherUniversity of Cambridgeen_US
dc.contributor.otherCancer Research UKen_US
dc.contributor.otherKarolinska Instituteten_US
dc.contributor.otherFaculty of Medicine, Siriraj Hospital, Mahidol Universityen_US
dc.contributor.otherThe University of Adelaideen_US
dc.date.accessioned2019-08-23T10:34:38Z
dc.date.available2019-08-23T10:34:38Z
dc.date.issued2018-04-03en_US
dc.description.abstract© 2018 The Author(s) Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Cells transition between aerobic and anaerobic metabolism when adapting to changes in oxygen supply. Sim et al. find that the enzyme FIH is expressed at high levels in skeletal muscle and decreases in activity under hypoxia. With the loss of FIH, cells have increased aerobic metabolism, which paradoxically accelerates other adaptations to hypoxia.en_US
dc.identifier.citationCell Metabolism. Vol.27, No.4 (2018), 898-913.e7en_US
dc.identifier.doi10.1016/j.cmet.2018.02.020en_US
dc.identifier.issn19327420en_US
dc.identifier.issn15504131en_US
dc.identifier.other2-s2.0-85044570074en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/45189
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044570074&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleThe Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxiaen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044570074&origin=inwarden_US

Files

Collections