Publication:
On the minimum number of monochromatic generalized Schur triples

dc.contributor.authorThotsaporn Thanatipanondaen_US
dc.contributor.authorElaine Wongen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-21T07:20:18Z
dc.date.accessioned2019-03-14T08:03:26Z
dc.date.available2018-12-21T07:20:18Z
dc.date.available2019-03-14T08:03:26Z
dc.date.issued2017-05-05en_US
dc.description.abstract© 2017, Australian National University. All rights reserved. The solution to the problem of finding the minimum number of monochromatic triples (x, y, x + ay) with a ≥ 2 being a fixed positive integer over any 2-coloring of [1, n] was conjectured by Butler, Costello, and Graham (2010) and Thanathipanonda (2009). We solve this problem using a method based on Datskovsky’s proof (2003) on the minimum number of monochromatic Schur triples (x, y, x + y). We do this by exploiting the combinatorial nature of the original proof and adapting it to the general problem.en_US
dc.identifier.citationElectronic Journal of Combinatorics. Vol.24, No.2 (2017)en_US
dc.identifier.issn10778926en_US
dc.identifier.other2-s2.0-85019119627en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/42384
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019119627&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleOn the minimum number of monochromatic generalized Schur triplesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019119627&origin=inwarden_US

Files

Collections