Publication: On the minimum number of monochromatic generalized Schur triples
dc.contributor.author | Thotsaporn Thanatipanonda | en_US |
dc.contributor.author | Elaine Wong | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.date.accessioned | 2018-12-21T07:20:18Z | |
dc.date.accessioned | 2019-03-14T08:03:26Z | |
dc.date.available | 2018-12-21T07:20:18Z | |
dc.date.available | 2019-03-14T08:03:26Z | |
dc.date.issued | 2017-05-05 | en_US |
dc.description.abstract | © 2017, Australian National University. All rights reserved. The solution to the problem of finding the minimum number of monochromatic triples (x, y, x + ay) with a ≥ 2 being a fixed positive integer over any 2-coloring of [1, n] was conjectured by Butler, Costello, and Graham (2010) and Thanathipanonda (2009). We solve this problem using a method based on Datskovsky’s proof (2003) on the minimum number of monochromatic Schur triples (x, y, x + y). We do this by exploiting the combinatorial nature of the original proof and adapting it to the general problem. | en_US |
dc.identifier.citation | Electronic Journal of Combinatorics. Vol.24, No.2 (2017) | en_US |
dc.identifier.issn | 10778926 | en_US |
dc.identifier.other | 2-s2.0-85019119627 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/42384 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019119627&origin=inward | en_US |
dc.subject | Computer Science | en_US |
dc.title | On the minimum number of monochromatic generalized Schur triples | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019119627&origin=inward | en_US |