Publication:
Cayley polynomial–time computable groups

dc.contributor.authorDmitry Berdinskyen_US
dc.contributor.authorMurray Elderen_US
dc.contributor.authorProhrak Kruengthomyaen_US
dc.contributor.otherUniversity of Technology Sydneyen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherMinistry of Higher Education, Science, Research and Innovationen_US
dc.date.accessioned2022-08-04T08:29:03Z
dc.date.available2022-08-04T08:29:03Z
dc.date.issued2021-01-01en_US
dc.description.abstractWe propose a new generalization of Cayley automatic groups, varying the time complexity of computing multiplication, and language complexity of the normal form representatives. We first consider groups which have normal form language in the class C and multiplication by generators computable in linear time on a certain restricted Turing machine model (position–faithful one–tape). We show that many of the algorithmic properties of automatic groups are preserved, prove various closure properties, and show that the class is quite large. We then generalize to groups which have normal form language in the class C and multiplication by generators computable in polynomial time on a (standard) Turing machine. Of particular interest is when C=REG (the class of regular languages). We prove that REG–Cayley polynomial–time computable groups include all finitely generated nilpotent groups, the wreath product Z2≀Z2, and Thompson's group F.en_US
dc.identifier.citationInformation and Computation. (2021)en_US
dc.identifier.doi10.1016/j.ic.2021.104768en_US
dc.identifier.issn10902651en_US
dc.identifier.issn08905401en_US
dc.identifier.other2-s2.0-85107451567en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76744
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107451567&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleCayley polynomial–time computable groupsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107451567&origin=inwarden_US

Files

Collections