Publication: Nonlinear stability analyses of vegetative pattern formation in an arid environment
Issued Date
2010-07-01
Resource Type
ISSN
17513766
17513758
17513758
Other identifier(s)
2-s2.0-79960504462
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Journal of Biological Dynamics. Vol.4, No.4 (2010), 346-380
Suggested Citation
N. Boonkorkuea, Y. Lenbury, F. J. Alvarado, D. J. Wollkind Nonlinear stability analyses of vegetative pattern formation in an arid environment. Journal of Biological Dynamics. Vol.4, No.4 (2010), 346-380. doi:10.1080/17513750903301954 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/28487
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Nonlinear stability analyses of vegetative pattern formation in an arid environment
Author(s)
Other Contributor(s)
Abstract
The development of spontaneous stationary vegetative patterns in an arid isotropic homogeneous environment is investigated by means of various weakly nonlinear stability analyses applied to the appropriate governing equation for this phenomenon. In particular, that process can be represented by a fourth-order partial differential time-evolution logistic equation for the total plant biomass per unit area divided by the carrying capacity of its territory and defined on an unbounded flat spatial domain. Those patterns that consist of parallel stripes, labyrinth-like mazes, rhombic arrays of rectangular patches, and hexagonal distributions of spots or gaps are generated by the balance between the effects of short-range facilitation and long-range competition. Then those theoretical predictions are compared with both relevant observational evidence and existing numerical simulations as well as placed in the context of the results from some recent nonlinear pattern formation studies. © 2010 Taylor & Francis.