Publication:
Parameter identification for pandemic influenza SEIQR model

dc.contributor.authorW. Jumpenen_US
dc.contributor.authorB. Wiwatanapatapheeen_US
dc.contributor.authorY. H. Wuen_US
dc.contributor.authorI. M. Tangen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherCurtin Universityen_US
dc.date.accessioned2018-07-12T02:24:47Z
dc.date.available2018-07-12T02:24:47Z
dc.date.issued2008-01-01en_US
dc.description.abstract© 2008 Global Information Publisher (H.K) Co., Limited. All rights reserved. In this paper, we study the identification of model parameters for the pandemic influenza susceptibleexposed- infected-quarantine-recovered (SEIQR) model using the differential evolution (DE) algorithm. From a given set of the measured data, say from the first outbreak, all parameters used in the model can be determined by the algorithm. We have also shown from numerical investigation that the DE algorithm converges to parameter values for different initial guesses. With the parameter property determined, the model can then be used to capture the behavior of the next outbreaks of the disease. The work provides an effective tool for predicting the spread of the disease.en_US
dc.identifier.citationAdvances in Applied Computing and Computational Sciences - Proceedings of International Symposium on Applied Computing and Computational Sciences, ACCS 2008. (2008), 132-137en_US
dc.identifier.other2-s2.0-84945930983en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/19147
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84945930983&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleParameter identification for pandemic influenza SEIQR modelen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84945930983&origin=inwarden_US

Files

Collections