Publication:
Observation of the Crab Nebula with LHAASO-KM2A - A performance study

dc.contributor.authorF. Aharonianen_US
dc.contributor.authorQ. Anen_US
dc.contributor.authorAxikeguen_US
dc.contributor.authorL. X. Baien_US
dc.contributor.authorY. X. Baien_US
dc.contributor.authorY. W. Baoen_US
dc.contributor.authorD. Bastierien_US
dc.contributor.authorX. J. Bien_US
dc.contributor.authorY. J. Bien_US
dc.contributor.authorH. Caien_US
dc.contributor.authorJ. T. Caien_US
dc.contributor.authorZ. Caoen_US
dc.contributor.authorJ. Changen_US
dc.contributor.authorJ. F. Changen_US
dc.contributor.authorX. C. Changen_US
dc.contributor.authorB. M. Chenen_US
dc.contributor.authorJ. Chenen_US
dc.contributor.authorL. Chenen_US
dc.contributor.authorL. Chenen_US
dc.contributor.authorL. Chenen_US
dc.contributor.authorM. J. Chenen_US
dc.contributor.authorM. L. Chenen_US
dc.contributor.authorQ. H. Chenen_US
dc.contributor.authorS. H. Chenen_US
dc.contributor.authorS. Z. Chenen_US
dc.contributor.authorT. L. Chenen_US
dc.contributor.authorX. L. Chenen_US
dc.contributor.authorY. Chenen_US
dc.contributor.authorN. Chengen_US
dc.contributor.authorY. D. Chengen_US
dc.contributor.authorS. W. Cuien_US
dc.contributor.authorX. H. Cuien_US
dc.contributor.authorY. D. Cuien_US
dc.contributor.authorB. Z. Daien_US
dc.contributor.authorH. L. Daien_US
dc.contributor.authorZ. G. Daien_US
dc.contributor.authorDanzengluobuen_US
dc.contributor.authorD. Della Volpeen_US
dc.contributor.authorB. D.Ettorre Piazzolien_US
dc.contributor.authorX. J. Dongen_US
dc.contributor.authorJ. H. Fanen_US
dc.contributor.authorY. Z. Fanen_US
dc.contributor.authorZ. X. Fanen_US
dc.contributor.authorJ. Fangen_US
dc.contributor.authorK. Fangen_US
dc.contributor.authorC. F. Fengen_US
dc.contributor.authorL. Fengen_US
dc.contributor.authorS. H. Fengen_US
dc.contributor.authorY. L. Fengen_US
dc.contributor.authorB. Gaoen_US
dc.contributor.authorC. D. Gaoen_US
dc.contributor.authorQ. Gaoen_US
dc.contributor.authorW. Gaoen_US
dc.contributor.authorM. M. Geen_US
dc.contributor.authorL. S. Gengen_US
dc.contributor.authorG. H. Gongen_US
dc.contributor.authorQ. B. Gouen_US
dc.contributor.authorM. H. Guen_US
dc.contributor.authorJ. G. Guoen_US
dc.contributor.authorX. L. Guoen_US
dc.contributor.authorY. Q. Guoen_US
dc.contributor.authorY. Y. Guoen_US
dc.contributor.authorY. A. Hanen_US
dc.contributor.authorH. H. Heen_US
dc.contributor.authorH. N. Heen_US
dc.contributor.authorJ. C. Heen_US
dc.contributor.authorS. L. Heen_US
dc.contributor.authorX. B. Heen_US
dc.contributor.authorY. Heen_US
dc.contributor.authorM. Helleren_US
dc.contributor.authorY. K. Horen_US
dc.contributor.authorC. Houen_US
dc.contributor.authorX. Houen_US
dc.contributor.authorH. B. Huen_US
dc.contributor.authorS. Huen_US
dc.contributor.authorS. C. Huen_US
dc.contributor.authorX. J. Huen_US
dc.contributor.authorD. H. Huangen_US
dc.contributor.authorQ. L. Huangen_US
dc.contributor.authorW. H. Huangen_US
dc.contributor.authorX. T. Huangen_US
dc.contributor.authorZ. C. Huangen_US
dc.contributor.authorF. Jien_US
dc.contributor.authorX. L. Jien_US
dc.contributor.authorH. Y. Jiaen_US
dc.contributor.authorK. Jiangen_US
dc.contributor.authorZ. J. Jiangen_US
dc.contributor.authorC. Jinen_US
dc.contributor.authorD. Kuleshoven_US
dc.contributor.authorK. Levochkinen_US
dc.contributor.authorB. B. Lien_US
dc.contributor.authorC. Lien_US
dc.contributor.authorC. Lien_US
dc.contributor.authorF. Lien_US
dc.contributor.authorH. B. Lien_US
dc.contributor.authorH. C. Lien_US
dc.contributor.authorH. Y. Lien_US
dc.contributor.authorJ. Lien_US
dc.contributor.authorK. Lien_US
dc.contributor.authorW. L. Lien_US
dc.contributor.otherState Key Laboratory of Particle Detection & Electronicsen_US
dc.contributor.otherNanjing Universityen_US
dc.contributor.otherShanghai Astronomical Observatory Chinese Academy of Sciencesen_US
dc.contributor.otherInstitute for Nuclear Research of the Russian Academy of Sciencesen_US
dc.contributor.otherShandong Universityen_US
dc.contributor.otherWuhan Universityen_US
dc.contributor.otherYunnan Universityen_US
dc.contributor.otherInstitute of High Energy Physics Chinese Academy of Scienceen_US
dc.contributor.otherUniversity of Chinese Academy of Sciencesen_US
dc.contributor.otherGuangzhou Universityen_US
dc.contributor.otherTsinghua Universityen_US
dc.contributor.otherSun Yat-Sen Universityen_US
dc.contributor.otherUniversity of Science and Technology of Chinaen_US
dc.contributor.otherZhengzhou Universityen_US
dc.contributor.otherDublin Institute for Advanced Studiesen_US
dc.contributor.otherUniversità degli Studi di Napoli Federico IIen_US
dc.contributor.otherSichuan Universityen_US
dc.contributor.otherNational Astronomical Observatories Chinese Academy of Sciencesen_US
dc.contributor.otherMax-Planck-Institut für Kernphysiken_US
dc.contributor.otherSouthwest Jiaotong Universityen_US
dc.contributor.otherPurple Mountain Observatory Chinese Academy of Sciencesen_US
dc.contributor.otherUniversité de Genèveen_US
dc.contributor.otherHebei Normal Universityen_US
dc.contributor.otherTibet Universityen_US
dc.contributor.otherTIANFU Cosmic Ray Research Centeren_US
dc.date.accessioned2022-08-04T11:28:00Z
dc.date.available2022-08-04T11:28:00Z
dc.date.issued2021-02-01en_US
dc.description.abstractA sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV. Even though the detector construction is still underway, half of the KM2A array has been operating stably since the end of 2019. In this paper, we present the KM2A data analysis pipeline and the first observation of the Crab Nebula, a standard candle in very high energy γ-ray astronomy. We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and >100 TeV with high significance, by analyzing the KM2A data of 136 live days between December 2019 and May 2020. With the observations, we test the detector performance, including angular resolution, pointing accuracy and cosmic-ray background rejection power. The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE = (1.13±0.05stat±0.08sys)×10-14 (E/20 TeV)-3.09±0.06stat±0.02sys cm-2 s-1 TeV-1. It is consistent with previous measurements by other experiments. This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena, such as cosmic PeVatrons, might be discovered.en_US
dc.identifier.citationChinese Physics C. Vol.45, No.2 (2021)en_US
dc.identifier.doi10.1088/1674-1137/abd01ben_US
dc.identifier.issn16741137en_US
dc.identifier.other2-s2.0-85100824643en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/79005
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100824643&origin=inwarden_US
dc.subjectPhysics and Astronomyen_US
dc.titleObservation of the Crab Nebula with LHAASO-KM2A - A performance studyen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100824643&origin=inwarden_US

Files

Collections