Publication:
Automating the Generation of Antimicrobial Resistance Surveillance Reports: Proof-of-Concept Study Involving Seven Hospitals in Seven Countries

dc.contributor.authorCherry Limen_US
dc.contributor.authorThyl Miliyaen_US
dc.contributor.authorVilada Chansamouthen_US
dc.contributor.authorMyint Thazin Aungen_US
dc.contributor.authorAbhilasha Karkeyen_US
dc.contributor.authorPrapit Teparrukkulen_US
dc.contributor.authorBatra Rahulen_US
dc.contributor.authorNguyen Phu Huong Lanen_US
dc.contributor.authorJohn Stellingen_US
dc.contributor.authorPaul Turneren_US
dc.contributor.authorElizabeth Ashleyen_US
dc.contributor.authorH. Rogier van Doornen_US
dc.contributor.authorHtet Naing Linen_US
dc.contributor.authorClare Lingen_US
dc.contributor.authorSoawapak Hinjoyen_US
dc.contributor.authorSopon Iamsirithawornen_US
dc.contributor.authorSusanna Dunachieen_US
dc.contributor.authorTri Wangrangsimakulen_US
dc.contributor.authorViriya Hantrakunen_US
dc.contributor.authorWilliam Schillingen_US
dc.contributor.authorLam Minh Yenen_US
dc.contributor.authorLe Van Tanen_US
dc.contributor.authorHtay Htay Hlaingen_US
dc.contributor.authorMayfong Mayxayen_US
dc.contributor.authorManivanh Vongsouvathen_US
dc.contributor.authorBuddha Basnyaten_US
dc.contributor.authorJonathan Edgeworthen_US
dc.contributor.authorSharon J. Peacocken_US
dc.contributor.authorGuy Thwaitesen_US
dc.contributor.authorNicholas Pj Dayen_US
dc.contributor.authorBen S. Cooperen_US
dc.contributor.authorDirek Limmathurotsakulen_US
dc.contributor.otherOxford University Clinical Research Uniten_US
dc.contributor.otherFriends of Patan Hospital Nepalen_US
dc.contributor.otherHospital for Tropical Diseases Vietnamen_US
dc.contributor.otherUniversity of Cambridgeen_US
dc.contributor.otherBrigham and Women's Hospitalen_US
dc.contributor.otherThailand Ministry of Public Healthen_US
dc.contributor.otherMahosot Hospital, Laoen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNuffield Department of Medicineen_US
dc.contributor.otherGuy's and St Thomas' NHS Foundation Trusten_US
dc.contributor.otherUniversity of Health Sciencesen_US
dc.contributor.otherMyanmar Oxford Clinical Research Uniten_US
dc.contributor.otherSunpasitthiprasong Hospitalen_US
dc.contributor.otherNorth Okkalapa General Hospitalen_US
dc.contributor.otherAngkor Hospital for Childrenen_US
dc.date.accessioned2020-11-18T09:58:51Z
dc.date.available2020-11-18T09:58:51Z
dc.date.issued2020-10-02en_US
dc.description.abstract©Cherry Lim, Thyl Miliya, Vilada Chansamouth, Myint Thazin Aung, Abhilasha Karkey, Prapit Teparrukkul, Batra Rahul, Nguyen Phu Huong Lan, John Stelling, Paul Turner, Elizabeth Ashley, H Rogier van Doorn, Htet Naing Lin, Clare Ling, Soawapak Hinjoy, Sopon Iamsirithaworn, Susanna Dunachie, Tri Wangrangsimakul, Viriya Hantrakun, William Schilling, Lam Minh Yen, Le Van Tan, Htay Htay Hlaing, Mayfong BACKGROUND: Reporting cumulative antimicrobial susceptibility testing data on a regular basis is crucial to inform antimicrobial resistance (AMR) action plans at local, national, and global levels. However, analyzing data and generating a report are time consuming and often require trained personnel. OBJECTIVE: This study aimed to develop and test an application that can support a local hospital to analyze routinely collected electronic data independently and generate AMR surveillance reports rapidly. METHODS: An offline application to generate standardized AMR surveillance reports from routinely available microbiology and hospital data files was written in the R programming language (R Project for Statistical Computing). The application can be run by double clicking on the application file without any further user input. The data analysis procedure and report content were developed based on the recommendations of the World Health Organization Global Antimicrobial Resistance Surveillance System (WHO GLASS). The application was tested on Microsoft Windows 10 and 7 using open access example data sets. We then independently tested the application in seven hospitals in Cambodia, Lao People's Democratic Republic, Myanmar, Nepal, Thailand, the United Kingdom, and Vietnam. RESULTS: We developed the AutoMated tool for Antimicrobial resistance Surveillance System (AMASS), which can support clinical microbiology laboratories to analyze their microbiology and hospital data files (in CSV or Excel format) onsite and promptly generate AMR surveillance reports (in PDF and CSV formats). The data files could be those exported from WHONET or other laboratory information systems. The automatically generated reports contain only summary data without patient identifiers. The AMASS application is downloadable from https://www.amass.website/. The participating hospitals tested the application and deposited their AMR surveillance reports in an open access data repository. CONCLUSIONS: The AMASS is a useful tool to support the generation and sharing of AMR surveillance reports.en_US
dc.identifier.citationJournal of medical Internet research. Vol.22, No.10 (2020), e19762en_US
dc.identifier.doi10.2196/19762en_US
dc.identifier.issn14388871en_US
dc.identifier.other2-s2.0-85092679110en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/60049
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092679110&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleAutomating the Generation of Antimicrobial Resistance Surveillance Reports: Proof-of-Concept Study Involving Seven Hospitals in Seven Countriesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092679110&origin=inwarden_US

Files

Collections