Publication:
Spatiotemporal Bayesian networks for malaria prediction: Case study of northern Thailand

dc.contributor.authorPeter Haddawyen_US
dc.contributor.authorRangwan Kasantikulen_US
dc.contributor.authorA. H.M.Imrul Hasanen_US
dc.contributor.authorChunyanuch Rattanabumrungen_US
dc.contributor.authorPichamon Rungrunen_US
dc.contributor.authorNatwipa Suksopeeen_US
dc.contributor.authorSaran Tantiwaranpanten_US
dc.contributor.authorNatcha Niruntasuken_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-21T07:41:42Z
dc.date.accessioned2019-03-14T08:03:40Z
dc.date.available2018-12-21T07:41:42Z
dc.date.available2019-03-14T08:03:40Z
dc.date.issued2017-01-01en_US
dc.description.abstract©2016 European Federation for Medical Informatics (EFMI) and IOS Press. While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations of inferences. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating a village level model with weekly temporal resolution for Tha Song Yang district in northern Thailand. The network is learned using data on cases and environmental covariates. The network models incidence over time as well as evolution of the environmental variables, and captures time lagged and nonlinear effects. Out of sample evaluation shows the model to have high accuracy for one and two week predictions.en_US
dc.identifier.citationStudies in Health Technology and Informatics. Vol.228, (2017), 773-777en_US
dc.identifier.doi10.3233/978-1-61499-678-1-773en_US
dc.identifier.issn18798365en_US
dc.identifier.issn09269630en_US
dc.identifier.other2-s2.0-85033486170en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/42653
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85033486170&origin=inwarden_US
dc.subjectEngineeringen_US
dc.subjectHealth Professionsen_US
dc.titleSpatiotemporal Bayesian networks for malaria prediction: Case study of northern Thailanden_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85033486170&origin=inwarden_US

Files

Collections