Publication:
A hybrid approach to discover semantic hierarchical sections in scholarly documents

dc.contributor.authorSuppawong Tuaroben_US
dc.contributor.authorPrasenjit Mitraen_US
dc.contributor.authorC. Lee Gilesen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherQatar Computing Research Instituteen_US
dc.contributor.otherPennsylvania State Universityen_US
dc.date.accessioned2018-11-23T10:00:43Z
dc.date.available2018-11-23T10:00:43Z
dc.date.issued2015-11-20en_US
dc.description.abstract© 2015 IEEE. Scholarly documents are usually composed of sections, each of which serves a different purpose by conveying specific context. The ability to automatically identify sections would allow us to understand the semantics of what is different in different sections of documents, such as what was in the introduction, methodologies used, experimental types, trends, etc. We propose a set of hybrid algorithms to 1) automatically identify section boundaries, 2) recognize standard sections, and 3) build a hierarchy of sections. Our algorithms achieve an F-measure of 92.38% in section boundary detection, 96% accuracy (average) on standard section recognition, and 95.51% in accuracy in the section positioning task.en_US
dc.identifier.citationProceedings of the International Conference on Document Analysis and Recognition, ICDAR. Vol.2015-November, (2015), 1081-1085en_US
dc.identifier.doi10.1109/ICDAR.2015.7333927en_US
dc.identifier.issn15205363en_US
dc.identifier.other2-s2.0-84962602612en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/35790
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84962602612&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleA hybrid approach to discover semantic hierarchical sections in scholarly documentsen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84962602612&origin=inwarden_US

Files

Collections