Publication: VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells
Issued Date
2013-06-01
Resource Type
ISSN
15440591
00220345
00220345
Other identifier(s)
2-s2.0-84877872640
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Journal of Dental Research. Vol.92, No.6 (2013), 524-531
Suggested Citation
K. Janebodin, Y. Zeng, W. Buranaphatthana, N. Ieronimakis, M. Reyes VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. Journal of Dental Research. Vol.92, No.6 (2013), 524-531. doi:10.1177/0022034513485599 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/31677
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells
Abstract
Dental pulp stem cells (DPSCs) have previously demonstrated potential pericyte-like topography and function. However, the mechanisms regulating their pericyte function are still unknown. In this study, murine DPSC angiogenic and pericyte function were investigated. Tie2-GFP mouse DPSCs were negative for GFP, indicating the absence of endothelial cells in DPSC cultures. Endothelial cells co-cultured with DPSCs formed more mature in vitro tube-like structures as compared with those co-cultured with bone marrow stromal cells (BMSCs). Many DPSCs were located adjacent to vascular tubes, assuming a pericyte location. Subcutaneous DPSC transplants in mice with matrigel (MG) (DPSC-MG) induced more vessel formation than BMSC-MG. Soluble Flt (sFlt), an angiogenic inhibitor that binds VEGF-A, significantly decreased the amount of blood vessels in DPSC-MG, but not in BMSC-MG. sFlt inhibited VEGFR2 and downstream ERK signaling in DPSCs. Similar to sFlt inhibition, VEGFR2 knockdown in DPSCs resulted in down-regulation of Vegfa, Vegf receptors, and EphrinB2 and decreased angiogenic induction of DPSCs in vivo. Therefore, the capacity of DPSCs to induce angiogenesis is VEGFR2-dependent. DPSCs enhance angiogenesis by secreting VEGF ligands and associating with vessels resembling pericyte-like cells. This study provides first insights into the mechanism(s) of DPSC angiogenic induction and their function as pericytes, crucial aspects for DPSC use in tissue regeneration. © International & American Associations for Dental Research.