Publication:
An Ensemble Associated Feature Subset Selection for Classification Problems

dc.contributor.authorTanasanee Phienthrakulen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-11T02:40:33Z
dc.date.accessioned2019-03-14T08:04:35Z
dc.date.available2018-12-11T02:40:33Z
dc.date.available2019-03-14T08:04:35Z
dc.date.issued2016-01-14en_US
dc.description.abstract© 2015 IEEE. Feature subset selection is an important problem in machine learning and data mining. If the suitable features are selected, the results of classification or prediction will be more accurate, while if the unsuitable features are used, the results may have no meaningful. This paper presents a method for feature subset selection that uses the ensemble technique to increase the efficiency of feature selection. Association rule mining is introduced to select the high relationship features. Bagging concept is applied to increase the confidence of selection. The experimental results show the efficiency of the proposed method that outperforms the efficiency of simple association feature subset selection.en_US
dc.identifier.citationProceedings - 2015 3rd International Symposium on Computational and Business Intelligence, ISCBI 2015. (2016), 63-67en_US
dc.identifier.doi10.1109/ISCBI.2015.18en_US
dc.identifier.other2-s2.0-84964873353en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43519
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964873353&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleAn Ensemble Associated Feature Subset Selection for Classification Problemsen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964873353&origin=inwarden_US

Files

Collections