Publication:
Alternative way to derive the distribution of the multivariate Ornstein–Uhlenbeck process

dc.contributor.authorP. Vatiwutipongen_US
dc.contributor.authorN. Phewcheanen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-01-27T09:12:05Z
dc.date.available2020-01-27T09:12:05Z
dc.date.issued2019-12-01en_US
dc.description.abstract© 2019, The Author(s). In this paper, we solve the Fokker–Planck equation of the multivariate Ornstein–Uhlenbeck process to obtain its probability density function. This approach allows us to ascertain the distribution without solving it analytically. We find that, at any moment in time, the process has a multivariate normal distribution. We obtain explicit formulae of mean, covariance, and cross-covariance matrix. Moreover, we obtain its mean-reverting condition and the long-term distribution.en_US
dc.identifier.citationAdvances in Difference Equations. Vol.2019, No.1 (2019)en_US
dc.identifier.doi10.1186/s13662-019-2214-1en_US
dc.identifier.issn16871847en_US
dc.identifier.issn16871839en_US
dc.identifier.other2-s2.0-85068790131en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/51189
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068790131&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleAlternative way to derive the distribution of the multivariate Ornstein–Uhlenbeck processen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068790131&origin=inwarden_US

Files

Collections