Publication:
Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning study

dc.contributor.authorRussell Fungen_US
dc.contributor.authorJose Villaren_US
dc.contributor.authorAli Dashtien_US
dc.contributor.authorLeila Cheikh Ismailen_US
dc.contributor.authorEleonora Staines-Uriasen_US
dc.contributor.authorEric O. Ohumaen_US
dc.contributor.authorLaurent J. Salomonen_US
dc.contributor.authorCesar G. Victoraen_US
dc.contributor.authorFernando C. Barrosen_US
dc.contributor.authorAnn Lamberten_US
dc.contributor.authorMaria Carvalhoen_US
dc.contributor.authorYasmin A. Jafferen_US
dc.contributor.authorJ. Alison Nobleen_US
dc.contributor.authorMichael G. Gravetten_US
dc.contributor.authorManorama Purwaren_US
dc.contributor.authorRuyan Pangen_US
dc.contributor.authorEnrico Bertinoen_US
dc.contributor.authorShama Munimen_US
dc.contributor.authorAung Myat Minen_US
dc.contributor.authorRose McGreadyen_US
dc.contributor.authorShane A. Norrisen_US
dc.contributor.authorZulfiqar A. Bhuttaen_US
dc.contributor.authorStephen H. Kennedyen_US
dc.contributor.authorAris T. Papageorghiouen_US
dc.contributor.authorAbbas Ourmazden_US
dc.contributor.authorS. E. Abbotten_US
dc.contributor.authorA. Abubakaren_US
dc.contributor.authorJ. Acedoen_US
dc.contributor.authorI. Ahmeden_US
dc.contributor.authorF. Al-Aamrien_US
dc.contributor.authorJ. Al-Abduwanien_US
dc.contributor.authorJ. Al-Abrien_US
dc.contributor.authorD. Alamen_US
dc.contributor.authorE. Albernazen_US
dc.contributor.authorH. Algrenen_US
dc.contributor.authorF. Al-Habsien_US
dc.contributor.authorM. Alijaen_US
dc.contributor.authorH. Al-Jabrien_US
dc.contributor.authorH. Al-Lawatiyaen_US
dc.contributor.authorB. Al-Rashidiyaen_US
dc.contributor.authorD. G. Altmanen_US
dc.contributor.authorW. K. Al-Zadjalien_US
dc.contributor.authorH. F. Andersenen_US
dc.contributor.authorL. Aranzetaen_US
dc.contributor.authorS. Ashen_US
dc.contributor.authorM. Bariccoen_US
dc.contributor.authorF. C. Barrosen_US
dc.contributor.authorH. Barsosioen_US
dc.contributor.authorC. Batiuken_US
dc.contributor.authorM. Batraen_US
dc.contributor.authorJ. Berkleyen_US
dc.contributor.authorE. Bertinoen_US
dc.contributor.authorM. K. Bhanen_US
dc.contributor.authorB. A. Bhaten_US
dc.contributor.authorI. Blakeyen_US
dc.contributor.authorS. Bornemeieren_US
dc.contributor.authorA. Bradmanen_US
dc.contributor.authorM. Buckleen_US
dc.contributor.authorO. Burnhamen_US
dc.contributor.authorF. Burtonen_US
dc.contributor.authorA. Cappen_US
dc.contributor.authorV. I. Cararraen_US
dc.contributor.authorR. Carewen_US
dc.contributor.authorV. I. Carraraen_US
dc.contributor.authorA. A. Carteren_US
dc.contributor.authorM. Carvalhoen_US
dc.contributor.authorP. Chamberlainen_US
dc.contributor.authorIsmail L. Cheikhen_US
dc.contributor.authorL. Cheikh Ismailen_US
dc.contributor.authorA. Choudharyen_US
dc.contributor.authorS. Choudharyen_US
dc.contributor.authorW. C. Chumleaen_US
dc.contributor.authorC. Condonen_US
dc.contributor.authorL. A. Corraen_US
dc.contributor.authorC. Cosgroveen_US
dc.contributor.authorR. Craiken_US
dc.contributor.authorM. F. da Silveiraen_US
dc.contributor.authorD. Danelonen_US
dc.contributor.authorT. de Weten_US
dc.contributor.authorE. de Leonen_US
dc.contributor.authorS. Deshmukhen_US
dc.contributor.authorG. Deutschen_US
dc.contributor.authorJ. Dhamien_US
dc.contributor.authorNicola P. Dien_US
dc.contributor.authorM. Digheen_US
dc.contributor.authorH. Dolken_US
dc.contributor.authorM. Dominguesen_US
dc.contributor.authorD. Dongaonkaren_US
dc.contributor.authorD. Enquobahrieen_US
dc.contributor.authorB. Eskenazien_US
dc.contributor.authorF. Farhien_US
dc.contributor.authorM. Fernandesen_US
dc.contributor.authorD. Finktonen_US
dc.contributor.authorS. Fonsecaen_US
dc.contributor.authorI. O. Fredericken_US
dc.contributor.authorM. Frigerioen_US
dc.contributor.authorP. Gagliotien_US
dc.contributor.authorC. Garzaen_US
dc.contributor.otherMinistry of Health Omanen_US
dc.contributor.otherUniversity of Sharjahen_US
dc.contributor.otherAga Khan Hospital Nairobien_US
dc.contributor.otherThe Aga Khan Universityen_US
dc.contributor.otherShoklo Malaria Research Uniten_US
dc.contributor.otherHospital for Sick Children University of Torontoen_US
dc.contributor.otherHôpital Necker Enfants Maladesen_US
dc.contributor.otherGreen Templeton Collegeen_US
dc.contributor.otherUniversity of Oxforden_US
dc.contributor.otherUniversidade Catolica de Pelotasen_US
dc.contributor.otherUniversity of Wisconsin-Milwaukeeen_US
dc.contributor.otherUniversity of Witwatersranden_US
dc.contributor.otherUniversity of Washington, Seattleen_US
dc.contributor.otherPeking Universityen_US
dc.contributor.otherUniversidade Federal de Pelotasen_US
dc.contributor.otherUniversità degli Studi di Torinoen_US
dc.contributor.otherNuffield Department of Medicineen_US
dc.contributor.otherUniversity of Oxford Medical Sciences Divisionen_US
dc.contributor.otherKetkar Hospitalen_US
dc.date.accessioned2020-08-25T09:39:43Z
dc.date.available2020-08-25T09:39:43Z
dc.date.issued2020-07-01en_US
dc.description.abstract© 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: Preterm birth is a major global health challenge, the leading cause of death in children under 5 years of age, and a key measure of a population's general health and nutritional status. Current clinical methods of estimating fetal gestational age are often inaccurate. For example, between 20 and 30 weeks of gestation, the width of the 95% prediction interval around the actual gestational age is estimated to be 18–36 days, even when the best ultrasound estimates are used. The aims of this study are to improve estimates of fetal gestational age and provide personalised predictions of future growth. Methods: Using ultrasound-derived, fetal biometric data, we developed a machine learning approach to accurately estimate gestational age. The accuracy of the method is determined by reference to exactly known facts pertaining to each fetus—specifically, intervals between ultrasound visits—rather than the date of the mother's last menstrual period. The data stem from a sample of healthy, well-nourished participants in a large, multicentre, population-based study, the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). The generalisability of the algorithm is shown with data from a different and more heterogeneous population (INTERBIO-21st Fetal Study). Findings: In the context of two large datasets, we estimated gestational age between 20 and 30 weeks of gestation with 95% confidence to within 3 days, using measurements made in a 10-week window spanning the second and third trimesters. Fetal gestational age can thus be estimated in the 20–30 weeks gestational age window with a prediction interval 3–5 times better than with any previous algorithm. This will enable improved management of individual pregnancies. 6-week forecasts of the growth trajectory for a given fetus are accurate to within 7 days. This will help identify at-risk fetuses more accurately than currently possible. At population level, the higher accuracy is expected to improve fetal growth charts and population health assessments. Interpretation: Machine learning can circumvent long-standing limitations in determining fetal gestational age and future growth trajectory, without recourse to often inaccurately known information, such as the date of the mother's last menstrual period. Using this algorithm in clinical practice could facilitate the management of individual pregnancies and improve population-level health. Upon publication of this study, the algorithm for gestational age estimates will be provided for research purposes free of charge via a web portal. Funding: Bill & Melinda Gates Foundation, Office of Science (US Department of Energy), US National Science Foundation, and National Institute for Health Research Oxford Biomedical Research Centre.en_US
dc.identifier.citationThe Lancet Digital Health. Vol.2, No.7 (2020), e368-e375en_US
dc.identifier.doi10.1016/S2589-7500(20)30131-Xen_US
dc.identifier.issn25897500en_US
dc.identifier.other2-s2.0-85086706974en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/57837
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086706974&origin=inwarden_US
dc.subjectDecision Sciencesen_US
dc.subjectHealth Professionsen_US
dc.subjectMedicineen_US
dc.titleAchieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning studyen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086706974&origin=inwarden_US

Files

Collections