Publication:
Automatic Cause-Effect Relation Extraction from Dental Textbooks Using BERT

dc.contributor.authorTerapat Chansaien_US
dc.contributor.authorRuksit Rojpaisarnkiten_US
dc.contributor.authorTeerakarn Boriboonsuben_US
dc.contributor.authorSuppawong Tuaroben_US
dc.contributor.authorMyat Su Yinen_US
dc.contributor.authorPeter Haddawyen_US
dc.contributor.authorSaeed Ul Hassanen_US
dc.contributor.authorMihai Pomarlanen_US
dc.contributor.otherManchester Metropolitan Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUniversität Bremenen_US
dc.date.accessioned2022-08-04T08:28:36Z
dc.date.available2022-08-04T08:28:36Z
dc.date.issued2021-01-01en_US
dc.description.abstractThe ability to automatically identify causal relations from surgical textbooks could prove helpful in the automatic construction of ontologies for dentistry and building learning-assistant tools for dental students where questions about essential concepts can be auto-generated from the extracted ontologies. In this paper, we propose a neural network architecture to extract cause-effect relations from dental surgery textbooks. The architecture uses a transformer to capture complex causal sentences, specific semantics, and large-scale ontologies and solve sequence-to-sequence tasks while preserving long-range dependencies. Furthermore, we have also used BERT to learn word contextual relations. During pre-training, BERT is trained on enormous corpora of unannotated text on the web. These pre-trained models can be fine-tuned on custom tasks with specific datasets. We first detect sentences that contain cause-effect relations. Then, cause and effect clauses from each cause-effect sentence are identified and extracted. Both automatic and expert-rated evaluations are used to validate the efficacy of our proposed models. Finally, we discuss a prototype system that helps dental students learn important concepts from dental surgery textbooks, along with our future research directions.en_US
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol.13133 LNCS, (2021), 127-138en_US
dc.identifier.doi10.1007/978-3-030-91669-5_11en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-85121912766en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76725
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85121912766&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleAutomatic Cause-Effect Relation Extraction from Dental Textbooks Using BERTen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85121912766&origin=inwarden_US

Files

Collections