Publication:
Singular higher-order semipositone nonlinear eigenvalue problems

dc.contributor.authorXinguang Zhangen_US
dc.contributor.authorLishan Liuen_US
dc.contributor.authorBenchawan Wiwatanapatapheeen_US
dc.contributor.authorYonghong Wuen_US
dc.contributor.otherQufu Normal Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherCurtin Universityen_US
dc.date.accessioned2018-08-24T01:56:37Z
dc.date.available2018-08-24T01:56:37Z
dc.date.issued2007-08-01en_US
dc.description.abstractIn this paper, we consider the existence of positive solutions to the following singular higher-order semipositone eigenvalue problem (HSEP): {(-1)(n-k)u(n)(t) = λ[f(t, u(t)) + q(t)], 0 < t < 1, u(i)(0) = 0, 0 ≤ i ≤ k - 1, u(i)(1) = 0, 0 ≤ i ≤ n-k-1, where n ≥ 2, 1 ≤ k ≤ n - 1, and λ > 0 is a parameter. The functions f and q may have singularity at t = 0 and (or) 1, and furthermore, the nonlinear function may change sign for 0 < t < 1. Without making any monotone-type assumptions, we obtain the positive solution of the problem for λ lying in some interval, based on the Krasnaselskii's fixedpoint theorem in a cone. Copyright © 2007 Watam Press.en_US
dc.identifier.citationDynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis. Vol.14, No.4 (2007), 565-576en_US
dc.identifier.issn12013390en_US
dc.identifier.other2-s2.0-34249950134en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/24618
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34249950134&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleSingular higher-order semipositone nonlinear eigenvalue problemsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34249950134&origin=inwarden_US

Files

Collections