Publication: Singular higher-order semipositone nonlinear eigenvalue problems
dc.contributor.author | Xinguang Zhang | en_US |
dc.contributor.author | Lishan Liu | en_US |
dc.contributor.author | Benchawan Wiwatanapataphee | en_US |
dc.contributor.author | Yonghong Wu | en_US |
dc.contributor.other | Qufu Normal University | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Curtin University | en_US |
dc.date.accessioned | 2018-08-24T01:56:37Z | |
dc.date.available | 2018-08-24T01:56:37Z | |
dc.date.issued | 2007-08-01 | en_US |
dc.description.abstract | In this paper, we consider the existence of positive solutions to the following singular higher-order semipositone eigenvalue problem (HSEP): {(-1)(n-k)u(n)(t) = λ[f(t, u(t)) + q(t)], 0 < t < 1, u(i)(0) = 0, 0 ≤ i ≤ k - 1, u(i)(1) = 0, 0 ≤ i ≤ n-k-1, where n ≥ 2, 1 ≤ k ≤ n - 1, and λ > 0 is a parameter. The functions f and q may have singularity at t = 0 and (or) 1, and furthermore, the nonlinear function may change sign for 0 < t < 1. Without making any monotone-type assumptions, we obtain the positive solution of the problem for λ lying in some interval, based on the Krasnaselskii's fixedpoint theorem in a cone. Copyright © 2007 Watam Press. | en_US |
dc.identifier.citation | Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis. Vol.14, No.4 (2007), 565-576 | en_US |
dc.identifier.issn | 12013390 | en_US |
dc.identifier.other | 2-s2.0-34249950134 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/24618 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34249950134&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | Singular higher-order semipositone nonlinear eigenvalue problems | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=34249950134&origin=inward | en_US |