Publication:
Evaluation of Land Use Land Cover Changes in Nan Province, Thailand, Using Multi-Sensor Satellite Data and Google Earth Engine

dc.contributor.authorJiratiwan Kruasilp
dc.contributor.authorSura Pattanakiat
dc.contributor.authorThamarat Phutthai
dc.contributor.authorPoonperm Vardhanabindu
dc.contributor.authorPisut Nakmuenwai
dc.date.accessioned2026-01-29T02:57:40Z
dc.date.available2026-01-29T02:57:40Z
dc.date.created2026-01-29
dc.date.issued2023
dc.description.abstractLand use and land cover (LULC) conversion has become a chronic problem in Nan province. The primary factors of changes are lacking arable land, agricultural practices, and agriculture expansion. This study evaluated the usefulness of multi-sensor Landsat-5 (LS5), Landsat-8 (LS8), Sentinel-1 (S1), and Sentinel-2 (S2) satellite data for monitoring changes in LULC in Nan province, Thailand during a 30-year period (1990-2019), using a random forest (RF) model and the cloud-based Google Earth Engine (GEE) platform. Information of established land management policies was also used to describe the LULC changes. The median composite of the input variables selection from multi-sensor data were used to generate datasets. A total of 36 datasets showed the overall accuracy (OA) ranged from 51.70% to 96.95%. Sentinel-2 satellite images combined with the Modified Soil-Adjusted Vegetation Index (MSAVI) and topographic variables provided the highest OA (96.95%). Combination of optical (i.e., S2 and LS8) and S1 Synthetic Aperture Radar (SAR) data expressed better classification accuracy than individual S1 data. Forest cover decreased continuously during five consecutive periods. Coverage of maize and Pará rubber trees rapidly expanded in 2010-2014. These changes indicate an adverse consequence of the established economic development promoted by industrial and export agriculture. The findings strongly support the use of the RF technique, GEE platform and multi-sensor satellite data to enhance LULC classification accuracy in mountainous area. This study recommended that certain informative and science-based evidence will encourage local policymakers to identify priority areas for land management and natural resource conservation.
dc.format.extent12 page
dc.format.mimetypeapplication/pdf
dc.identifier.citationEnvironment and Natural Resources Journal. Vol. 21, No.2 (Mar - Apr 2023), 186-197
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/114085
dc.language.isoeng
dc.rightsผลงานนี้เป็นลิขสิทธิ์ของมหาวิทยาลัยมหิดล ขอสงวนไว้สำหรับเพื่อการศึกษาเท่านั้น ต้องอ้างอิงแหล่งที่มา ห้ามดัดแปลงเนื้อหา และห้ามนำไปใช้เพื่อการค้า
dc.rights.holderFaculty of Environment and Resource Studies. Mahidol University
dc.subjectRandom forest
dc.subjectSynthetic Aperture
dc.subjectChange detection
dc.subjectGoogle Earth Engine
dc.subjectLand management policy
dc.subjectEnvironment and Natural Resources Journal
dc.subjectวารสารสิ่งแวดล้อมและทรัพยากรธรรมชาติ
dc.titleEvaluation of Land Use Land Cover Changes in Nan Province, Thailand, Using Multi-Sensor Satellite Data and Google Earth Engine
dc.typeArticle
dcterms.accessRightsopen access
dspace.entity.typePublication
mods.location.urlhttps://ph02.tci-thaijo.org/index.php/ennrj/article/view/248525
oaire.citation.endPage197
oaire.citation.issue2
oaire.citation.startPage186
oaire.citation.titleEnvironment and Natural Resources Journal
oaire.citation.volume21
oairecerif.author.affiliationMahidol University. Faculty of Environment and Resource Studies

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
en-ar-sura-2023.pdf
Size:
828.03 KB
Format:
Adobe Portable Document Format

Collections