Publication:
Encapsulation of vitamin D<inf>3</inf> in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility

dc.contributor.authorThunnalin Winuprasithen_US
dc.contributor.authorPiyachai Khomeinen_US
dc.contributor.authorWiphada Mitbumrungen_US
dc.contributor.authorManop Suphantharikaen_US
dc.contributor.authorAnadi Nitithamyongen_US
dc.contributor.authorDavid Julian McClementsen_US
dc.contributor.otherUniversity of Massachusetts Amhersten_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2019-08-23T10:13:52Z
dc.date.available2019-08-23T10:13:52Z
dc.date.issued2018-10-01en_US
dc.description.abstract© 2018 Elsevier Ltd Oil-in-water Pickering emulsions stabilized by nanofibrillated cellulose (NFC) were used to encapsulate and deliver vitamin D3. NFC was extracted from a waste product of the food industry, mangosteen (Garcinia mangostana L.) rind, using dissolution in a hot sodium hydroxide solution, bleaching using hydrogen peroxide, and shearing using a high-pressure homogenizer. This yielded cellulose fibers with a diameter of around 60 nm and a length of several micrometers. Emulsions containing 10% w/w oil (0.01% w/w vitamin D3 and 9.99% w/w soybean oil), 0.10–0.70% w/w NFC as emulsifier, and phosphate buffer (pH 7) were prepared. The effect of NFC on lipid digestion and vitamin bioaccessibility was investigated using a simulated gastrointestinal tract (GIT) model, which included mouth, stomach and small intestine phases. The rate and extent of lipid digestion, as well as the vitamin bioaccessibility, decreased with increasing NFC concentration. Numerous physicochemical phenomena may account for this effect, including the ability of NFC to: act as a physical barrier at the lipid droplet surfaces; to promote droplet flocculation in the gastric phase; and, to increase the viscosity of the aqueous phase. The slight decrease in vitamin D3 bioaccessibility at higher NFC levels, was probably due to the lower level of lipid digestion. Our results indicate that mangosteen fiber can be used to stabilize oil-in-water emulsions, and only has a minor effect on lipid digestion and vitamin bioaccessibility when used at relatively low levels. This information may be useful for the rational design of functional foods from natural waste-products, such as mangosteen rind.en_US
dc.identifier.citationFood Hydrocolloids. Vol.83, (2018), 153-164en_US
dc.identifier.doi10.1016/j.foodhyd.2018.04.047en_US
dc.identifier.issn0268005Xen_US
dc.identifier.other2-s2.0-85046806342en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/44662
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046806342&origin=inwarden_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectChemical Engineeringen_US
dc.subjectChemistryen_US
dc.titleEncapsulation of vitamin D<inf>3</inf> in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibilityen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046806342&origin=inwarden_US

Files

Collections