Publication: Keras R-CNN: library for cell detection in biological images using deep neural networks
dc.contributor.author | Jane Hung | en_US |
dc.contributor.author | Allen Goodman | en_US |
dc.contributor.author | Deepali Ravel | en_US |
dc.contributor.author | Stefanie C.P. Lopes | en_US |
dc.contributor.author | Gabriel W. Rangel | en_US |
dc.contributor.author | Odailton A. Nery | en_US |
dc.contributor.author | Benoit Malleret | en_US |
dc.contributor.author | Francois Nosten | en_US |
dc.contributor.author | Marcus V.G. Lacerda | en_US |
dc.contributor.author | Marcelo U. Ferreira | en_US |
dc.contributor.author | Laurent Rénia | en_US |
dc.contributor.author | Manoj T. Duraisingh | en_US |
dc.contributor.author | Fabio T.M. Costa | en_US |
dc.contributor.author | Matthias Marti | en_US |
dc.contributor.author | Anne E. Carpenter | en_US |
dc.contributor.other | A-Star, Singapore Immunology Network | en_US |
dc.contributor.other | Fundacao de Medicina Tropical do Amazonas | en_US |
dc.contributor.other | Shoklo Malaria Research Unit | en_US |
dc.contributor.other | Harvard T.H. Chan School of Public Health | en_US |
dc.contributor.other | Universidade Estadual de Campinas | en_US |
dc.contributor.other | Yong Loo Lin School of Medicine | en_US |
dc.contributor.other | Fundacao Oswaldo Cruz | en_US |
dc.contributor.other | Massachusetts Institute of Technology | en_US |
dc.contributor.other | Nuffield Department of Medicine | en_US |
dc.contributor.other | Universidade de Sao Paulo - USP | en_US |
dc.contributor.other | College of Medical, Veterinary & Life Sciences | en_US |
dc.contributor.other | Broad Institute | en_US |
dc.date.accessioned | 2020-08-25T09:02:45Z | |
dc.date.available | 2020-08-25T09:02:45Z | |
dc.date.issued | 2020-07-11 | en_US |
dc.description.abstract | BACKGROUND: A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. RESULTS: We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool's simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. CONCLUSIONS: Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection. | en_US |
dc.identifier.citation | BMC bioinformatics. Vol.21, No.1 (2020), 300 | en_US |
dc.identifier.doi | 10.1186/s12859-020-03635-x | en_US |
dc.identifier.issn | 14712105 | en_US |
dc.identifier.other | 2-s2.0-85087872385 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/57697 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087872385&origin=inward | en_US |
dc.subject | Biochemistry, Genetics and Molecular Biology | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Mathematics | en_US |
dc.title | Keras R-CNN: library for cell detection in biological images using deep neural networks | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087872385&origin=inward | en_US |