Publication:
Keras R-CNN: library for cell detection in biological images using deep neural networks

dc.contributor.authorJane Hungen_US
dc.contributor.authorAllen Goodmanen_US
dc.contributor.authorDeepali Ravelen_US
dc.contributor.authorStefanie C.P. Lopesen_US
dc.contributor.authorGabriel W. Rangelen_US
dc.contributor.authorOdailton A. Neryen_US
dc.contributor.authorBenoit Mallereten_US
dc.contributor.authorFrancois Nostenen_US
dc.contributor.authorMarcus V.G. Lacerdaen_US
dc.contributor.authorMarcelo U. Ferreiraen_US
dc.contributor.authorLaurent Réniaen_US
dc.contributor.authorManoj T. Duraisinghen_US
dc.contributor.authorFabio T.M. Costaen_US
dc.contributor.authorMatthias Martien_US
dc.contributor.authorAnne E. Carpenteren_US
dc.contributor.otherA-Star, Singapore Immunology Networken_US
dc.contributor.otherFundacao de Medicina Tropical do Amazonasen_US
dc.contributor.otherShoklo Malaria Research Uniten_US
dc.contributor.otherHarvard T.H. Chan School of Public Healthen_US
dc.contributor.otherUniversidade Estadual de Campinasen_US
dc.contributor.otherYong Loo Lin School of Medicineen_US
dc.contributor.otherFundacao Oswaldo Cruzen_US
dc.contributor.otherMassachusetts Institute of Technologyen_US
dc.contributor.otherNuffield Department of Medicineen_US
dc.contributor.otherUniversidade de Sao Paulo - USPen_US
dc.contributor.otherCollege of Medical, Veterinary & Life Sciencesen_US
dc.contributor.otherBroad Instituteen_US
dc.date.accessioned2020-08-25T09:02:45Z
dc.date.available2020-08-25T09:02:45Z
dc.date.issued2020-07-11en_US
dc.description.abstractBACKGROUND: A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. RESULTS: We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool's simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. CONCLUSIONS: Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.en_US
dc.identifier.citationBMC bioinformatics. Vol.21, No.1 (2020), 300en_US
dc.identifier.doi10.1186/s12859-020-03635-xen_US
dc.identifier.issn14712105en_US
dc.identifier.other2-s2.0-85087872385en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/57697
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087872385&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleKeras R-CNN: library for cell detection in biological images using deep neural networksen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087872385&origin=inwarden_US

Files

Collections