Publication: Random forests for dura mater microvasculature segmentation using epifluorescence images
dc.contributor.author | Yasmin M. Kassim | en_US |
dc.contributor.author | V. B.Surya Prasath | en_US |
dc.contributor.author | Rengarajan Pelapur | en_US |
dc.contributor.author | Olga V. Glinskii | en_US |
dc.contributor.author | Richard J. Maude | en_US |
dc.contributor.author | Vladislav V. Glinsky | en_US |
dc.contributor.author | Virginia H. Huxley | en_US |
dc.contributor.author | Kannappan Palaniappan | en_US |
dc.contributor.other | Computational Imaging and VisAnalysis (CIVA) Lab | en_US |
dc.contributor.other | VA Medical Center | en_US |
dc.contributor.other | Department of Medical Pharmacology and Physiology | en_US |
dc.contributor.other | University of Missouri-Columbia | en_US |
dc.contributor.other | Nuffield Department of Clinical Medicine | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Harvard School of Public Health | en_US |
dc.date.accessioned | 2018-12-11T02:37:34Z | |
dc.date.accessioned | 2019-03-14T08:04:30Z | |
dc.date.available | 2018-12-11T02:37:34Z | |
dc.date.available | 2019-03-14T08:04:30Z | |
dc.date.issued | 2016-10-13 | en_US |
dc.description.abstract | © 2016 IEEE. Automatic segmentation of microvascular structures is a critical step in quantitatively characterizing vessel remodeling and other physiological changes in the dura mater or other tissues. We developed a supervised random forest (RF) classifier for segmenting thin vessel structures using multiscale features based on Hessian, oriented second derivatives, Laplacian of Gaussian and line features. The latter multiscale line detector feature helps in detecting and connecting faint vessel structures that would otherwise be missed. Experimental results on epifluorescence imagery show that the RF approach produces foreground vessel regions that are almost 20 and 25 percent better than Niblack and Otsu threshold-based segmentations respectively. | en_US |
dc.identifier.citation | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. Vol.2016-October, (2016), 2901-2904 | en_US |
dc.identifier.doi | 10.1109/EMBC.2016.7591336 | en_US |
dc.identifier.issn | 1557170X | en_US |
dc.identifier.other | 2-s2.0-85009083425 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/43433 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009083425&origin=inward | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Engineering | en_US |
dc.subject | Medicine | en_US |
dc.title | Random forests for dura mater microvasculature segmentation using epifluorescence images | en_US |
dc.type | Conference Paper | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009083425&origin=inward | en_US |