Publication:
Random forests for dura mater microvasculature segmentation using epifluorescence images

dc.contributor.authorYasmin M. Kassimen_US
dc.contributor.authorV. B.Surya Prasathen_US
dc.contributor.authorRengarajan Pelapuren_US
dc.contributor.authorOlga V. Glinskiien_US
dc.contributor.authorRichard J. Maudeen_US
dc.contributor.authorVladislav V. Glinskyen_US
dc.contributor.authorVirginia H. Huxleyen_US
dc.contributor.authorKannappan Palaniappanen_US
dc.contributor.otherComputational Imaging and VisAnalysis (CIVA) Laben_US
dc.contributor.otherVA Medical Centeren_US
dc.contributor.otherDepartment of Medical Pharmacology and Physiologyen_US
dc.contributor.otherUniversity of Missouri-Columbiaen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherHarvard School of Public Healthen_US
dc.date.accessioned2018-12-11T02:37:34Z
dc.date.accessioned2019-03-14T08:04:30Z
dc.date.available2018-12-11T02:37:34Z
dc.date.available2019-03-14T08:04:30Z
dc.date.issued2016-10-13en_US
dc.description.abstract© 2016 IEEE. Automatic segmentation of microvascular structures is a critical step in quantitatively characterizing vessel remodeling and other physiological changes in the dura mater or other tissues. We developed a supervised random forest (RF) classifier for segmenting thin vessel structures using multiscale features based on Hessian, oriented second derivatives, Laplacian of Gaussian and line features. The latter multiscale line detector feature helps in detecting and connecting faint vessel structures that would otherwise be missed. Experimental results on epifluorescence imagery show that the RF approach produces foreground vessel regions that are almost 20 and 25 percent better than Niblack and Otsu threshold-based segmentations respectively.en_US
dc.identifier.citationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. Vol.2016-October, (2016), 2901-2904en_US
dc.identifier.doi10.1109/EMBC.2016.7591336en_US
dc.identifier.issn1557170Xen_US
dc.identifier.other2-s2.0-85009083425en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43433
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009083425&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMedicineen_US
dc.titleRandom forests for dura mater microvasculature segmentation using epifluorescence imagesen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009083425&origin=inwarden_US

Files

Collections