Publication:
MAGNETIC FIELD LINE RANDOM WALK in ISOTROPIC TURBULENCE with VARYING MEAN FIELD

dc.contributor.authorW. Sonsretteeen_US
dc.contributor.authorP. Subedien_US
dc.contributor.authorD. Ruffoloen_US
dc.contributor.authorW. H. Matthaeusen_US
dc.contributor.authorA. P. Snodinen_US
dc.contributor.authorP. Wongpanen_US
dc.contributor.authorP. Chuychaien_US
dc.contributor.authorG. Rowlandsen_US
dc.contributor.authorS. Vyasen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.contributor.otherPanyapiwat Institute of Managementen_US
dc.contributor.otherBartol Research Instituteen_US
dc.contributor.otherKing Mongkut's University of Technology North Bangkoken_US
dc.contributor.otherUniversity of Otagoen_US
dc.contributor.otherBurapha Universityen_US
dc.contributor.otherThe University of Warwicken_US
dc.contributor.otherIndian Institute of Technology Roorkeeen_US
dc.date.accessioned2018-12-11T02:43:54Z
dc.date.accessioned2019-03-14T08:04:40Z
dc.date.available2018-12-11T02:43:54Z
dc.date.available2019-03-14T08:04:40Z
dc.date.issued2016-08-01en_US
dc.description.abstract© 2016. The American Astronomical Society. All rights reserved. In astrophysical plasmas, the magnetic field line random walk (FLRW) plays an important role in guiding particle transport. The FLRW behavior is scaled by the Kubo number R = (b/B0 )(ℓ∥/ ℓ⊥) for rms magnetic fluctuation b, large-scale mean field B0, and coherence scales parallel (ℓ∥) and perpendicular (ℓ⊥) to B0. Here we use a nonperturbative analytic framework based on Corrsin's hypothesis, together with direct computer simulations, to examine the R-scaling of the FLRW for varying B0 with finite b and isotropic fluctuations with ℓ∥/ℓ⊥ = 1, instead of the well-studied route of varying for ℓ∥/ℓ⊥ for b ≪ B0. The FLRW for isotropic magnetic fluctuations is also of astrophysical interest regarding transport processes in the interstellar medium. With a mean field, fluctuations may have variance anisotropy, so we consider limiting cases of isotropic variance and transverse variance (with bz = 0). We obtain analytic theories, and closed-form solutions for extreme cases. Padé approximants are provided to interpolate all versions of theory and simulations to any B0. We demonstrate that, for isotropic turbulence, Corrsin-based theories generally work well, and with increasing R there is a transition from quasilinear to Bohm diffusion. This holds even with bz = 0, when different routes R → ∞ to are mathematically equivalent; in contrast with previous studies, we find that a Corrsin-based theory with random ballistic decorrelation works well even up to R = 400, where the effects of trapping are barely perceptible in simulation results.en_US
dc.identifier.citationAstrophysical Journal, Supplement Series. Vol.225, No.2 (2016)en_US
dc.identifier.doi10.3847/0067-0049/225/2/20en_US
dc.identifier.issn00670049en_US
dc.identifier.other2-s2.0-84984865008en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43608
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84984865008&origin=inwarden_US
dc.subjectEarth and Planetary Sciencesen_US
dc.titleMAGNETIC FIELD LINE RANDOM WALK in ISOTROPIC TURBULENCE with VARYING MEAN FIELDen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84984865008&origin=inwarden_US

Files

Collections