Publication:
Transcriptome and excretory-secretory proteome of infective-stage larvae of the nematode Gnathostoma spinigerum reveal potential immunodiagnostic targets for development

dc.contributor.authorSupaporn Nuamtanongen_US
dc.contributor.authorOnrapak Reamtongen_US
dc.contributor.authorOrawan Phuphisuten_US
dc.contributor.authorPalang Chotsirien_US
dc.contributor.authorPreeyarat Malaithongen_US
dc.contributor.authorParon Dekumyoyen_US
dc.contributor.authorPoom Adisakwattanaen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-01-27T07:27:23Z
dc.date.available2020-01-27T07:27:23Z
dc.date.issued2019-01-01en_US
dc.description.abstract© 2019 EDP Sciences. Background: Gnathostoma spinigerum is a harmful parasitic nematode that causes severe morbidity and mortality in humans and animals. Effective drugs and vaccines and reliable diagnostic methods are needed to prevent and control the associated diseases; however, the lack of genome, transcriptome, and proteome databases remains a major limitation. In this study, transcriptomic and secretomic analyses of advanced third-stage larvae of G. spinigerum (aL3Gs) were performed using next-generation sequencing, bioinformatics, and proteomics. Results: An analysis that incorporated transcriptome and bioinformatics data to predict excretory-secretory proteins (ESPs) classified 171 and 292 proteins into classical and non-classical secretory groups, respectively. Proteins with proteolytic (metalloprotease), cell signaling regulatory (i.e., kinases and phosphatase), and metabolic regulatory function (i.e., glucose and lipid metabolism) were significantly upregulated in the transcriptome and secretome. A two-dimensional (2D) immunomic analysis of aL3Gs-ESPs with G. spinigerum-infected human sera and related helminthiases suggested that the serine protease inhibitor (serpin) was a promising antigenic target for the further development of gnathostomiasis immunodiagnostic methods. Conclusions: The transcriptome and excretory-secretory proteome of aL3Gs can facilitate an understanding of the basic molecular biology of the parasite and identifying multiple associated factors, possibly promoting the discovery of novel drugs and vaccines. The 2D-immunomic analysis identified serpin, a protein secreted from aL3Gs, as an interesting candidate for immunodiagnosis that warrants immediate evaluation and validation.en_US
dc.identifier.citationParasite. Vol.26, (2019)en_US
dc.identifier.doi10.1051/parasite/2019033en_US
dc.identifier.issn17761042en_US
dc.identifier.issn1252607Xen_US
dc.identifier.other2-s2.0-85067501191en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/49848
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067501191&origin=inwarden_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectImmunology and Microbiologyen_US
dc.subjectMedicineen_US
dc.titleTranscriptome and excretory-secretory proteome of infective-stage larvae of the nematode Gnathostoma spinigerum reveal potential immunodiagnostic targets for developmenten_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067501191&origin=inwarden_US

Files

Collections