Publication:
EM Algorithm for Truncated and Censored Poisson Likelihoods

dc.contributor.authorChukiat Viwatwongkasemen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-11T02:41:09Z
dc.date.accessioned2019-03-14T08:04:35Z
dc.date.available2018-12-11T02:41:09Z
dc.date.available2019-03-14T08:04:35Z
dc.date.issued2016-01-01en_US
dc.description.abstract© 2016 The Authors. The aim of this study is to find the maximum likelihood estimate (MLE) among frequency count data by using the expectation-maximization (EM) algorithm in which is useful to impute the missing or hidden values. Two forms of missing count data in both zero truncation and right censoring situations are illustrated for estimating the population size on drug use. The results show that a truncated and censored Poisson likelihood performs well with good estimates corresponding to the EM algorithm with a numerically stable convergence, a monotone increasing likelihood, and providing local maxima, so the expected global maximum of the MLE depends on the initial value.en_US
dc.identifier.citationProcedia Computer Science. Vol.86, (2016), 240-243en_US
dc.identifier.doi10.1016/j.procs.2016.05.109en_US
dc.identifier.issn18770509en_US
dc.identifier.other2-s2.0-84999751727en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43522
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84999751727&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleEM Algorithm for Truncated and Censored Poisson Likelihoodsen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84999751727&origin=inwarden_US

Files

Collections