Publication:
A comprehensive RNA handling and transcriptomics guide for high-throughput processing of Plasmodium blood-stage samples

dc.contributor.authorMichal Kucharskien_US
dc.contributor.authorJaishree Tripathien_US
dc.contributor.authorSourav Nayaken_US
dc.contributor.authorLei Zhuen_US
dc.contributor.authorGrennady Wirjanataen_US
dc.contributor.authorRob W. Van Der Pluijmen_US
dc.contributor.authorMehul Dhordaen_US
dc.contributor.authorArjen Dondorpen_US
dc.contributor.authorZbynek Bozdechen_US
dc.contributor.otherSchool of Biological Sciencesen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNuffield Department of Medicineen_US
dc.contributor.otherWorldWide Antimalarial Resistance Network-Asia Regional Centreen_US
dc.date.accessioned2020-11-18T09:27:47Z
dc.date.available2020-11-18T09:27:47Z
dc.date.issued2020-10-09en_US
dc.description.abstract© 2020 The Author(s). Background: Sequencing technology advancements opened new opportunities to use transcriptomics for studying malaria pathology and epidemiology. Even though in recent years the study of whole parasite transcriptome proved to be essential in understanding parasite biology there is no compiled up-to-date reference protocol for the efficient generation of transcriptome data from growing number of samples. Here, a comprehensive methodology on how to preserve, extract, amplify, and sequence full-length mRNA transcripts from Plasmodium-infected blood samples is presented that can be fully streamlined for high-throughput studies. Results: The utility of various commercially available RNA-preserving reagents in a range of storage conditions was evaluated. Similarly, several RNA extraction protocols were compared and the one most suitable method for the extraction of high-quality total RNA from low-parasitaemia and low-volume blood samples was established. Furthermore, the criteria needed to evaluate the quality and integrity of Plasmodium RNA in the presence of human RNA was updated. Optimization of SMART-seq2 amplification method to better suit AT-rich Plasmodium falciparum RNA samples allowed us to generate high-quality transcriptomes from as little as 10 ng of total RNA and a lower parasitaemia limit of 0.05%. Finally, a modified method for depletion of unwanted human haemoglobin transcripts using in vitro CRISPR-Cas9 treatment was designed, thus improving parasite transcriptome coverage in low parasitaemia samples. To prove the functionality of the pipeline for both laboratory and field strains, the highest 2-hour resolution RNA-seq transcriptome for P. falciparum 3D7 intraerythrocytic life cycle available to date was generated, and the entire protocol was applied to create the largest transcriptome data from Southeast Asian field isolates. Conclusions: Overall, the presented methodology is an inclusive pipeline for generation of good quality transcriptomic data from a diverse range of Plasmodium-infected blood samples with varying parasitaemia and RNA inputs. The flexibility of this pipeline to be adapted to robotic handling will facilitate both small and large-scale future transcriptomic studies in the field of malaria.en_US
dc.identifier.citationMalaria Journal. Vol.19, No.1 (2020)en_US
dc.identifier.doi10.1186/s12936-020-03436-wen_US
dc.identifier.issn14752875en_US
dc.identifier.other2-s2.0-85092454499en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/59985
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092454499&origin=inwarden_US
dc.subjectImmunology and Microbiologyen_US
dc.subjectMedicineen_US
dc.titleA comprehensive RNA handling and transcriptomics guide for high-throughput processing of Plasmodium blood-stage samplesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092454499&origin=inwarden_US

Files

Collections