Publication:
Histone methyltransferase inhibitors are orally bioavailable, fast- Acting molecules with activity against different species causing malaria in humans

dc.contributor.authorNicholas A. Malmquisten_US
dc.contributor.authorSandeep Sundriyalen_US
dc.contributor.authorJoachim Caronen_US
dc.contributor.authorPatty Chenen_US
dc.contributor.authorBenoit Witkowskien_US
dc.contributor.authorDidier Menarden_US
dc.contributor.authorRossarin Suwanarusken_US
dc.contributor.authorLaurent Reniaen_US
dc.contributor.authorFrancois Nostenen_US
dc.contributor.authorMaría Belén Jiménez-Díazen_US
dc.contributor.authorIñigo Angulo-Barturenen_US
dc.contributor.authorMaría Santos Martínezen_US
dc.contributor.authorSantiago Ferreren_US
dc.contributor.authorLaura M. Sanzen_US
dc.contributor.authorFrancisco Javier Gamoen_US
dc.contributor.authorSergio Wittlinen_US
dc.contributor.authorSandra Duffyen_US
dc.contributor.authorVicky M. Averyen_US
dc.contributor.authorAndrea Rueckeren_US
dc.contributor.authorMichael J. Delvesen_US
dc.contributor.authorRobert E. Sindenen_US
dc.contributor.authorMatthew J. Fuchteren_US
dc.contributor.authorArtur Scherfen_US
dc.contributor.otherInstitut Pasteur, Parisen_US
dc.contributor.otherCNRS Centre National de la Recherche Scientifiqueen_US
dc.contributor.otherImperial College Londonen_US
dc.contributor.otherInstitut Pasteur du Cambodgeen_US
dc.contributor.otherAgency for Science, Technology and Research, Singaporeen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherGlaxoSmithKline plc, Spainen_US
dc.contributor.otherSwiss Tropical and Public Health Institute (Swiss TPH)en_US
dc.contributor.otherUniversitat Baselen_US
dc.contributor.otherGriffith Universityen_US
dc.date.accessioned2018-11-23T10:50:31Z
dc.date.available2018-11-23T10:50:31Z
dc.date.issued2015-02-01en_US
dc.description.abstract©2015 American Society for Microbiology. Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC<inf>50</inf>s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria.en_US
dc.identifier.citationAntimicrobial Agents and Chemotherapy. Vol.59, No.2 (2015), 950-959en_US
dc.identifier.doi10.1128/AAC.04419-14en_US
dc.identifier.issn10986596en_US
dc.identifier.issn00664804en_US
dc.identifier.other2-s2.0-84921917278en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/36520
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84921917278&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleHistone methyltransferase inhibitors are orally bioavailable, fast- Acting molecules with activity against different species causing malaria in humansen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84921917278&origin=inwarden_US

Files

Collections