Publication:
Monotone hybrid projection algorithms for an infinitely countable family of lipschitz generalized asymptotically quasi-nonexpansive mappings

dc.contributor.authorSuthep Suantaien_US
dc.contributor.authorWatcharaporn Cholamjiaken_US
dc.contributor.otherChiang Mai Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-09-13T06:47:36Z
dc.date.available2018-09-13T06:47:36Z
dc.date.issued2009-12-01en_US
dc.description.abstractWe prove a weak convergence theorem of the modified Mann iteration process for a uniformly Lipschitzian and generalized asymptotically quasi-nonexpansive mapping in a uniformly convex Banach space. We also introduce two kinds of new monotone hybrid methods and obtain strong convergence theorems for an infinitely countable family of uniformly Lipschitzian and generalized asymptotically quasi-nonexpansive mappings in a Hilbert space. The results improve and extend the corresponding ones announced by Kim and Xu (2006) and Nakajo and Takahashi (2003). © 2009 W. Cholamjiak and S. Suantai.en_US
dc.identifier.citationAbstract and Applied Analysis. Vol.2009, (2009)en_US
dc.identifier.doi10.1155/2009/297565en_US
dc.identifier.issn16870409en_US
dc.identifier.issn10853375en_US
dc.identifier.other2-s2.0-74849116696en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/27771
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=74849116696&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleMonotone hybrid projection algorithms for an infinitely countable family of lipschitz generalized asymptotically quasi-nonexpansive mappingsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=74849116696&origin=inwarden_US

Files

Collections