Publication:
A curious family of binomial determinants that count rhombus tilings of a holey hexagon

dc.contributor.authorChristoph Koutschanen_US
dc.contributor.authorThotsaporn Thanatipanondaen_US
dc.contributor.otherJohann Radon Institute for Computational and Applied Mathematicsen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-01-27T08:18:53Z
dc.date.available2020-01-27T08:18:53Z
dc.date.issued2019-08-01en_US
dc.description.abstract© 2019 Elsevier Inc. We evaluate a curious determinant, first mentioned by George Andrews in 1980 in the context of descending plane partitions. Our strategy is to combine the famous Desnanot-Jacobi-Dodgson identity with automated proof techniques. More precisely, we follow the holonomic ansatz that was proposed by Doron Zeilberger in 2007. We derive a compact and nice formula for Andrews's determinant, and use it to solve a challenge problem that we posed in a previous paper. By noting that Andrews's determinant is a special case of a two-parameter family of determinants, we find closed forms for several one-parameter subfamilies. The interest in these determinants arises because they count cyclically symmetric rhombus tilings of a hexagon with several triangular holes inside.en_US
dc.identifier.citationJournal of Combinatorial Theory. Series A. Vol.166, (2019), 352-381en_US
dc.identifier.doi10.1016/j.jcta.2019.03.001en_US
dc.identifier.issn10960899en_US
dc.identifier.issn00973165en_US
dc.identifier.other2-s2.0-85063887376en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50620
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063887376&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleA curious family of binomial determinants that count rhombus tilings of a holey hexagonen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063887376&origin=inwarden_US

Files

Collections