Publication:
Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears

dc.contributor.authorFeng Yangen_US
dc.contributor.authorMahdieh Poostchien_US
dc.contributor.authorHang Yuen_US
dc.contributor.authorZhou Zhouen_US
dc.contributor.authorKamolrat Silamuten_US
dc.contributor.authorJian Yuen_US
dc.contributor.authorRichard J. Maudeen_US
dc.contributor.authorStefan Jaegeren_US
dc.contributor.authorSameer Antanien_US
dc.contributor.otherBeijing Jiaotong Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNational Library of Medicine (NLM)en_US
dc.date.accessioned2020-06-02T04:07:29Z
dc.date.available2020-06-02T04:07:29Z
dc.date.issued2020-05-01en_US
dc.description.abstract© 2013 IEEE. Objective: This work investigates the possibility of automated malaria parasite detection in thick blood smears with smartphones. Methods: We have developed the first deep learning method that can detect malaria parasites in thick blood smear images and can run on smartphones. Our method consists of two processing steps. First, we apply an intensity-based Iterative Global Minimum Screening (IGMS), which performs a fast screening of a thick smear image to find parasite candidates. Then, a customized Convolutional Neural Network (CNN) classifies each candidate as either parasite or background. Together with this paper, we make a dataset of 1819 thick smear images from 150 patients publicly available to the research community. We used this dataset to train and test our deep learning method, as described in this paper. Results: A patient-level five-fold cross-evaluation demonstrates the effectiveness of the customized CNN model in discriminating between positive (parasitic) and negative image patches in terms of the following performance indicators: accuracy (93.46% ± 0.32%), AUC (98.39% ± 0.18%), sensitivity (92.59% ± 1.27%), specificity (94.33% ± 1.25%), precision (94.25% ± 1.13%), and negative predictive value (92.74% ± 1.09%). High correlation coefficients (>0.98) between automatically detected parasites and ground truth, on both image level and patient level, demonstrate the practicality of our method. Conclusion: Promising results are obtained for parasite detection in thick blood smears for a smartphone application using deep learning methods. Significance: Automated parasite detection running on smartphones is a promising alternative to manual parasite counting for malaria diagnosis, especially in areas lacking experienced parasitologists.en_US
dc.identifier.citationIEEE Journal of Biomedical and Health Informatics. Vol.24, No.5 (2020), 1427-1438en_US
dc.identifier.doi10.1109/JBHI.2019.2939121en_US
dc.identifier.issn21682208en_US
dc.identifier.issn21682194en_US
dc.identifier.other2-s2.0-85084221515en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/56119
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084221515&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectHealth Professionsen_US
dc.titleDeep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smearsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084221515&origin=inwarden_US

Files

Collections