Publication:
Predictive QSAR modeling of aldose reductase inhibitors using Monte Carlo feature selection

dc.contributor.authorChanin Nantasenamaten_US
dc.contributor.authorTeerawat Monnoren_US
dc.contributor.authorApilak Worachartcheewanen_US
dc.contributor.authorPrasit Mandien_US
dc.contributor.authorChartchalerm Isarankura-Na-Ayudhyaen_US
dc.contributor.authorVirapong Prachayasittikulen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-11-09T02:05:54Z
dc.date.available2018-11-09T02:05:54Z
dc.date.issued2014-04-09en_US
dc.description.abstractThis study explores the chemical space and quantitative structure-activity relationship (QSAR) of a set of 60 sulfonylpyridazinones with aldose reductase inhibitory activity. The physicochemical properties of the investigated compounds were described by a total of 3230 descriptors comprising of 6 quantum chemical descriptors and 3224 molecular descriptors. A subset of 5 descriptors was selected from the aforementioned pool by means of Monte Carlo (MC) feature selection coupled to multiple linear regression (MLR). Predictive QSAR models were then constructed by MLR, support vector machine and artificial neural network, which afforded good predictive performance as deduced from internal and external validation. The investigated models are capable of accounting for the origins of aldose reductase inhibitory activity and could be utilized in predicting this property in screening for novel and robust compounds. © 2014 Elsevier Masson SAS. All rights reserved.en_US
dc.identifier.citationEuropean Journal of Medicinal Chemistry. Vol.76, (2014), 352-359en_US
dc.identifier.doi10.1016/j.ejmech.2014.02.043en_US
dc.identifier.issn17683254en_US
dc.identifier.issn02235234en_US
dc.identifier.other2-s2.0-84896804902en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/33624
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84896804902&origin=inwarden_US
dc.subjectChemistryen_US
dc.subjectMedicineen_US
dc.subjectPharmacology, Toxicology and Pharmaceuticsen_US
dc.titlePredictive QSAR modeling of aldose reductase inhibitors using Monte Carlo feature selectionen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84896804902&origin=inwarden_US

Files

Collections