Publication:
How can artificial intelligence be used for peptidomics?

dc.contributor.authorLuís Perpetuoen_US
dc.contributor.authorJulie Kleinen_US
dc.contributor.authorRita Ferreiraen_US
dc.contributor.authorSofia Guedesen_US
dc.contributor.authorFrancisco Amadoen_US
dc.contributor.authorAdelino Leite-Moreiraen_US
dc.contributor.authorArtur M.S. Silvaen_US
dc.contributor.authorVisith Thongboonkerden_US
dc.contributor.authorRui Vitorinoen_US
dc.contributor.otherSiriraj Hospitalen_US
dc.contributor.otherUniversite Paul Sabatier Toulouse IIIen_US
dc.contributor.otherUniversidade de Aveiroen_US
dc.contributor.otherFaculdade de Medicina da Universidade do Porto (FMUP)en_US
dc.date.accessioned2022-08-04T08:13:42Z
dc.date.available2022-08-04T08:13:42Z
dc.date.issued2021-01-01en_US
dc.description.abstractIntroduction: Peptidomics is an emerging field of omics sciences using advanced isolation, analysis, and computational techniques that enable qualitative and quantitative analyses of various peptides in biological samples. Peptides can act as useful biomarkers and as therapeutic molecules for diseases Areas covered: The use of therapeutic peptides can be predicted quickly and efficiently using data-driven computational methods, particularly artificial intelligence (AI) approach. Various AI approaches are useful for peptide-based drug discovery, such as support vector machine, random forest, extremely randomized trees, and other more recently developed deep learning methods. AI methods are relatively new to the development of peptide-based therapies, but these techniques already become essential tools in protein science by dissecting novel therapeutic peptides and their functions (Figure 1). Expert opinion: Researchers have shown that AI models can facilitate the development of peptidomics and selective peptide therapies in the field of peptide science. Biopeptide prediction is important for the discovery and development of successful peptide-based drugs. Due to their ability to predict therapeutic roles based on sequence details, many AI-dependent prediction tools have been developed (Figure 1).en_US
dc.identifier.citationExpert Review of Proteomics. Vol.18, No.7 (2021), 527-556en_US
dc.identifier.doi10.1080/14789450.2021.1962303en_US
dc.identifier.issn17448387en_US
dc.identifier.issn14789450en_US
dc.identifier.other2-s2.0-85113763712en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76342
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113763712&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleHow can artificial intelligence be used for peptidomics?en_US
dc.typeReviewen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113763712&origin=inwarden_US

Files

Collections