Publication:
Comparison of neuro-fuzzy based techniques in nasopharyngeal carcinoma recurrence prediction

dc.contributor.authorOrrawan Kumdeeen_US
dc.contributor.authorHirosato Sekien_US
dc.contributor.authorHiroaki Ishiien_US
dc.contributor.authorThongchai Bhongmakapaten_US
dc.contributor.authorPanrasee Ritthipravaten_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherOsaka Universityen_US
dc.contributor.otherJapan Society for the Promotion of Scienceen_US
dc.date.accessioned2018-09-13T06:33:22Z
dc.date.available2018-09-13T06:33:22Z
dc.date.issued2009-12-10en_US
dc.description.abstractThis paper aims to compare neuro-fuzzy based techniques for effective prediction of nasopharyngeal carcinoma (NPC) recurrence. The techniques include an artificial neural network (ANN), adaptive neuro-fuzzy inference systems (ANFIS), the functional-type single input rule modules connected fuzzy inference method (F-SIRMs method) and the functional and neural network type SIRMs method (F-NN-SIRMs method). All models are produced to predict the presence or absence and timing of the NPC recurrence. Five years predictions are carried out. Validity of each predictive model is assured by 10-fold cross validation. The results show that the F-NN-SIRMs method is superior to the other techniques in a sense that it provides the higher prediction performance. ©2009 IEEE.en_US
dc.identifier.citationIEEE International Conference on Fuzzy Systems. (2009), 1199-1203en_US
dc.identifier.doi10.1109/FUZZY.2009.5277085en_US
dc.identifier.issn10987584en_US
dc.identifier.other2-s2.0-71249111926en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/27450
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=71249111926&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleComparison of neuro-fuzzy based techniques in nasopharyngeal carcinoma recurrence predictionen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=71249111926&origin=inwarden_US

Files

Collections