Publication:
HIVCoR: A sequence-based tool for predicting HIV-1 CRF01_AE coreceptor usage

dc.contributor.authorSayamon Hongjaiseeen_US
dc.contributor.authorChanin Nantasenamaten_US
dc.contributor.authorTanawan Samleerat Carrawayen_US
dc.contributor.authorWatshara Shoombuatongen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherChiang Mai Universityen_US
dc.date.accessioned2020-01-27T07:43:18Z
dc.date.available2020-01-27T07:43:18Z
dc.date.issued2019-06-01en_US
dc.description.abstract© 2019 Elsevier Ltd Determination of HIV-1 coreceptor usage is strongly recommended before starting the coreceptor-specific inhibitors for HIV treatment. Currently, the genotypic assays are the most interesting tools due to they are more feasible than phenotypic assays. However, most of prediction models were developed and validated by data set of HIV-1 subtype B and C. The present study aims to develop a powerful and reliable model to accurately predict HIV-1 coreceptor usage for CRF01_AE subtype called HIVCoR. HIVCoR utilized random forest and support vector machine as the prediction model, together with amino acid compositions, pseudo amino acid compositions and relative synonymous codon usage frequencies as the input feature. The overall success rate of 93.79% was achieved from the external validation test on the objective benchmark dataset. Comparison results indicated that HIVCoR was superior to other bioinformatics tools and genotypic predictors. For the convenience of experimental scientists, a user-friendly webserver has been established at http://codes.bio/hivcor/.en_US
dc.identifier.citationComputational Biology and Chemistry. Vol.80, (2019), 419-432en_US
dc.identifier.doi10.1016/j.compbiolchem.2019.05.006en_US
dc.identifier.issn14769271en_US
dc.identifier.other2-s2.0-85066120698en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50159
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066120698&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemistryen_US
dc.subjectMathematicsen_US
dc.titleHIVCoR: A sequence-based tool for predicting HIV-1 CRF01_AE coreceptor usageen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066120698&origin=inwarden_US

Files

Collections