Publication: A comparison of bivariate, multivariate random-effects, and Poisson correlated gamma-frailty models to meta-analyze individual patient data of ordinal scale diagnostic tests
dc.contributor.author | Gabrielle Simoneau | en_US |
dc.contributor.author | Brooke Levis | en_US |
dc.contributor.author | Pim Cuijpers | en_US |
dc.contributor.author | John P.A. Ioannidis | en_US |
dc.contributor.author | Scott B. Patten | en_US |
dc.contributor.author | Ian Shrier | en_US |
dc.contributor.author | Charles H. Bombardier | en_US |
dc.contributor.author | Flavia de Lima Osório | en_US |
dc.contributor.author | Jesse R. Fann | en_US |
dc.contributor.author | Dwenda Gjerdingen | en_US |
dc.contributor.author | Femke Lamers | en_US |
dc.contributor.author | Manote Lotrakul | en_US |
dc.contributor.author | Bernd Löwe | en_US |
dc.contributor.author | Juwita Shaaban | en_US |
dc.contributor.author | Lesley Stafford | en_US |
dc.contributor.author | Henk C.P.M. van Weert | en_US |
dc.contributor.author | Mary A. Whooley | en_US |
dc.contributor.author | Karin A. Wittkampf | en_US |
dc.contributor.author | Albert S. Yeung | en_US |
dc.contributor.author | Brett D. Thombs | en_US |
dc.contributor.author | Andrea Benedetti | en_US |
dc.contributor.other | McGill University | en_US |
dc.contributor.other | Lady Davis Institute for Medical Research | en_US |
dc.contributor.other | Vrije Universiteit Amsterdam | en_US |
dc.contributor.other | Stanford University | en_US |
dc.contributor.other | University of Calgary | en_US |
dc.contributor.other | University of Washington, Seattle | en_US |
dc.contributor.other | Universidade de Sao Paulo - USP | en_US |
dc.contributor.other | University of Minnesota Twin Cities | en_US |
dc.contributor.other | VU University Medical Center | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Universitätsklinikum Hamburg-Eppendorf und Medizinische Fakultät | en_US |
dc.contributor.other | School of Medical Sciences - Universiti Sains Malaysia | en_US |
dc.contributor.other | Royal Women's Hospital, Carlton | en_US |
dc.contributor.other | Academic Medical Centre, University of Amsterdam | en_US |
dc.contributor.other | VA Medical Center | en_US |
dc.contributor.other | Massachusetts General Hospital | en_US |
dc.contributor.other | Centre universitaire de santé McGill | en_US |
dc.date.accessioned | 2018-12-21T07:24:37Z | |
dc.date.accessioned | 2019-03-14T08:03:28Z | |
dc.date.available | 2018-12-21T07:24:37Z | |
dc.date.available | 2019-03-14T08:03:28Z | |
dc.date.issued | 2017-11-01 | en_US |
dc.description.abstract | © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings. | en_US |
dc.identifier.citation | Biometrical Journal. Vol.59, No.6 (2017), 1317-1338 | en_US |
dc.identifier.doi | 10.1002/bimj.201600184 | en_US |
dc.identifier.issn | 15214036 | en_US |
dc.identifier.issn | 03233847 | en_US |
dc.identifier.other | 2-s2.0-85022328420 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/42415 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85022328420&origin=inward | en_US |
dc.subject | Decision Sciences | en_US |
dc.title | A comparison of bivariate, multivariate random-effects, and Poisson correlated gamma-frailty models to meta-analyze individual patient data of ordinal scale diagnostic tests | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85022328420&origin=inward | en_US |