Publication:
Machine-Learning Clustering Technique Applied to Powder X-Ray Diffraction Patterns to Distinguish Compositions of ThMn<inf>12</inf>-Type Alloys

dc.contributor.authorKeishu Utimulaen_US
dc.contributor.authorRutchapon Hunkaoen_US
dc.contributor.authorMasao Yanoen_US
dc.contributor.authorHiroyuki Kimotoen_US
dc.contributor.authorKenta Hongoen_US
dc.contributor.authorShogo Kawaguchien_US
dc.contributor.authorSujin Suwannaen_US
dc.contributor.authorRyo Maezonoen_US
dc.contributor.otherJapan Synchrotron Radiation Research Instituteen_US
dc.contributor.otherJapan Science and Technology Agencyen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherJapan Advanced Institute of Science and Technologyen_US
dc.contributor.otherNational Institute for Materials Scienceen_US
dc.contributor.otherToyota Motor Corporationen_US
dc.date.accessioned2020-08-25T10:19:07Z
dc.date.available2020-08-25T10:19:07Z
dc.date.issued2020-07-01en_US
dc.description.abstract© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A clustering technique is applied using dynamic-time-wrapping (DTW) analysis to X-ray diffraction (XRD) spectrum patterns in order to identify the microscopic structures of substituents introduced into the main phase of magnetic alloys. The clustering technique is found to perform well, identifying the concentrations of the substituents with success rates of ≈90%. This level of performance is attributed to the capability of DTW processing to filter out irrelevant information such as the peak intensities (due to the uncontrollability of diffraction conditions in polycrystalline samples) and the uniform shift of peak positions (due to the thermal expansion of lattices). The established framework is not limited to the system treated in this work, but is widely applicable to systems the properties of which are to be tuned by atomic substitutions within a phase. The framework has a broader potential to predict properties such as magnetic moments, optical spectra etc.) from observed XRD patterns, by predicting such properties evaluated from predicted microscopic local structure.en_US
dc.identifier.citationAdvanced Theory and Simulations. Vol.3, No.7 (2020)en_US
dc.identifier.doi10.1002/adts.202000039en_US
dc.identifier.issn25130390en_US
dc.identifier.other2-s2.0-85085910886en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/57995
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085910886&origin=inwarden_US
dc.subjectMathematicsen_US
dc.subjectMultidisciplinaryen_US
dc.titleMachine-Learning Clustering Technique Applied to Powder X-Ray Diffraction Patterns to Distinguish Compositions of ThMn<inf>12</inf>-Type Alloysen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085910886&origin=inwarden_US

Files

Collections