Publication: Altered ATP release and metabolism in dorsal root ganglia of neuropathic rats
Issued Date
2008-12-24
Resource Type
ISSN
17448069
Other identifier(s)
2-s2.0-59349112493
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Molecular Pain. Vol.4, (2008)
Suggested Citation
Yoshizo Matsuka, Takeshi Ono, Hirotate Iwase, Somsak Mitrirattanakul, Kevin S. Omoto, Ting Cho, Yan Yan N. Lam, Bradley Snyder, Igor Spigelman Altered ATP release and metabolism in dorsal root ganglia of neuropathic rats. Molecular Pain. Vol.4, (2008). doi:10.1186/1744-8069-4-66 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/18794
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Altered ATP release and metabolism in dorsal root ganglia of neuropathic rats
Abstract
Background: Adenosine 5′-triphosphate (ATP) has a ubiquitous role in metabolism and a major role in pain responses after tissue injury. We investigated the changes in basal and KCl-evoked ATP release from rat dorsal root ganglia (DRG) after peripheral neuropathy induction by unilateral sciatic nerve entrapment (SNE). Results: After SNE, rats develop long-lasting decreases in ipsilateral hindpaw withdrawal thresholds to mechanical and thermal stimulation. At 15-21 days after neuropathy induction, excised ipsilateral L4-L5 DRG display significantly elevated basal extracellular ATP levels compared to contralateral or control (naive) DRG. However, KCl-evoked ATP release is no longer observed in ipsilateral DRG. We hypothesized that the differential SNE effects on basal and evoked ATP release could result from the conversion of extracellular ATP to adenosine with subsequent activation of adenosine A1 receptors (A1Rs) on DRG neurons. Adding the selective A1R agonist, 2-chloro-N6-cyclopentyladenosine (100 nM) significantly decreased basal and evoked ATP release in DRG from naïve rats, indicating functional A1R activation. In DRG ipsilateral to SNE, adding a selective A1R antagonist, 8-cyclopentyl-1,3-dipropylxanthine (30 nM), further increased basal ATP levels and relieved the blockade of KCl-evoked ATP release suggesting that increased A1R activation attenuates evoked ATP release in neurons ipsilateral to SNE. To determine if altered ATP release was a consequence of altered DRG metabolism we compared O2consumption between control and neuropathic DRG. DRG ipsilateral to SNE consumed O2at a higher rate than control or contralateral DRG. Conclusion: These data suggest that peripheral nerve entrapment increases DRG metabolism and ATP release, which in turn is modulated by increased A1R activation. © 2008 Matsuka et al; licensee BioMed Central Ltd.