Publication:
Representable posets

dc.contributor.authorRob Egroten_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-11T03:13:00Z
dc.date.accessioned2019-03-14T08:01:53Z
dc.date.available2018-12-11T03:13:00Z
dc.date.available2019-03-14T08:01:53Z
dc.date.issued2016-01-13en_US
dc.description.abstract© 2016 Elsevier B.V. A poset is representable if it can be embedded in a field of sets in such a way that existing finite meets and joins become intersections and unions respectively (we say finite meets and joins are preserved). More generally, for cardinals α and β a poset is said to be (α,β)-representable if an embedding into a field of sets exists that preserves meets of sets smaller than α and joins of sets smaller than β. We show using an ultraproduct/ultraroot argument that when 2≤α,β≤ω the class of (α,β)-representable posets is elementary, but does not have a finite axiomatization in the case where either α or β=ω. We also show that the classes of posets with representations preserving either countable or all meets and joins are pseudoelementary.en_US
dc.identifier.citationJournal of Applied Logic. Vol.16, (2016), 60-71en_US
dc.identifier.doi10.1016/j.jal.2016.03.003en_US
dc.identifier.issn15708683en_US
dc.identifier.other2-s2.0-84992304894en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/40954
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84992304894&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleRepresentable posetsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84992304894&origin=inwarden_US

Files

Collections