Publication: Representable posets
dc.contributor.author | Rob Egrot | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.date.accessioned | 2018-12-11T03:13:00Z | |
dc.date.accessioned | 2019-03-14T08:01:53Z | |
dc.date.available | 2018-12-11T03:13:00Z | |
dc.date.available | 2019-03-14T08:01:53Z | |
dc.date.issued | 2016-01-13 | en_US |
dc.description.abstract | © 2016 Elsevier B.V. A poset is representable if it can be embedded in a field of sets in such a way that existing finite meets and joins become intersections and unions respectively (we say finite meets and joins are preserved). More generally, for cardinals α and β a poset is said to be (α,β)-representable if an embedding into a field of sets exists that preserves meets of sets smaller than α and joins of sets smaller than β. We show using an ultraproduct/ultraroot argument that when 2≤α,β≤ω the class of (α,β)-representable posets is elementary, but does not have a finite axiomatization in the case where either α or β=ω. We also show that the classes of posets with representations preserving either countable or all meets and joins are pseudoelementary. | en_US |
dc.identifier.citation | Journal of Applied Logic. Vol.16, (2016), 60-71 | en_US |
dc.identifier.doi | 10.1016/j.jal.2016.03.003 | en_US |
dc.identifier.issn | 15708683 | en_US |
dc.identifier.other | 2-s2.0-84992304894 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/40954 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84992304894&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | Representable posets | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84992304894&origin=inward | en_US |