Publication:
Multi-spectral optical imaging of the spatiotemporal dynamics of ionospheric intermittent turbulence

dc.contributor.authorAbraham C.L. Chianen_US
dc.contributor.authorJosé R. Abaldeen_US
dc.contributor.authorRodrigo A. Mirandaen_US
dc.contributor.authorFelix A. Borottoen_US
dc.contributor.authorDavid L. Hysellen_US
dc.contributor.authorErico L. Rempelen_US
dc.contributor.authorDavid Ruffoloen_US
dc.contributor.otherUniversidade de Brasíliaen_US
dc.contributor.otherInstituto Tecnologico de Aeronauticaen_US
dc.contributor.otherInstituto Nacional de Pesquisas Espaciaisen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherThe University of Adelaideen_US
dc.contributor.otherCornell Universityen_US
dc.contributor.otherUniversity of Concepcionen_US
dc.date.accessioned2019-08-28T07:11:51Z
dc.date.available2019-08-28T07:11:51Z
dc.date.issued2018-12-01en_US
dc.description.abstract© 2018 The Author(s). Equatorial plasma depletions have significant impact on radio wave propagation in the upper atmosphere, causing rapid fluctuations in the power of radio signals used in telecommunication and GPS navigation, thus playing a crucial role in space weather impacts. Complex structuring and self-organization of equatorial plasma depletions involving bifurcation, connection, disconnection and reconnection are the signatures of nonlinear evolution of interchange instability and secondary instabilities, responsible for the generation of coherent structures and turbulence in the ionosphere. The aims of this paper are three-fold: (1) to report the first optical imaging of reconnection of equatorial plasma depletions in the South Atlantic Magnetic Anomaly, (2) to investigate the optical imaging of equatorial ionospheric intermittent turbulence, and (3) to compare nonlinear characteristics of optical imaging of equatorial plasma depletions for two different altitudes at same times. We show that the degree of spatiotemporal complexity of ionospheric intermittent turbulence can be quantified by nonlinear studies of optical images, confirming the duality of amplitude-phase synchronization in multiscale interactions. By decomposing the analyses into North-South and East-West directions we show that the degree of non-Gaussianity, intermittency and multifractality is stronger in the North-South direction, confirming the anisotropic nature of the interchange instability. In particular, by using simultaneous observation of multi-spectral all-sky emissions from two different heights we show that the degree of non-Gaussianity and intermittency in the bottomside F-region ionosphere is stronger than the peak F-region ionosphere. Our results are confirmed by two sets of observations on the nights of 28 September 2002 and 9 November 2002.en_US
dc.identifier.citationScientific Reports. Vol.8, No.1 (2018)en_US
dc.identifier.doi10.1038/s41598-018-28780-5en_US
dc.identifier.issn20452322en_US
dc.identifier.other2-s2.0-85049907084en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/47496
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049907084&origin=inwarden_US
dc.subjectMultidisciplinaryen_US
dc.titleMulti-spectral optical imaging of the spatiotemporal dynamics of ionospheric intermittent turbulenceen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85049907084&origin=inwarden_US

Files

Collections