Publication:
Autoweka: Toward an automated data mining software for qsar and qspr studies

dc.contributor.authorChanin Nantasenamaten_US
dc.contributor.authorApilak Worachartcheewanen_US
dc.contributor.authorSaksiri Jamsaken_US
dc.contributor.authorLikit Preeyanonen_US
dc.contributor.authorWatshara Shoombuatongen_US
dc.contributor.authorSaw Simeonen_US
dc.contributor.authorPrasit Mandien_US
dc.contributor.authorChartchalerm Isarankura-Na-Ayudhyaen_US
dc.contributor.authorVirapong Prachayasittikulen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-11-23T09:46:21Z
dc.date.available2018-11-23T09:46:21Z
dc.date.issued2015-01-01en_US
dc.description.abstract© Springer Science+Business Media New York 2015. In biology and chemistry, a key goal is to discover novel compounds affording potent biological activity or chemical properties. This could be achieved through a chemical intuition-driven trial-and-error process or via data-driven predictive modeling. The latter is based on the concept of quantitative structure-activity/ property relationship (QSAR/QSPR) when applied in modeling the biological activity and chemical properties, respectively, of compounds. Data mining is a powerful technology underlying QSAR/QSPR as it harnesses knowledge from large volumes of high-dimensional data via multivariate analysis. Although extremely useful, the technicalities of data mining may overwhelm potential users, especially those in the life sciences. Herein, we aim to lower the barriers to access and utilization of data mining software for QSAR/QSPR studies. AutoWeka is an automated data mining software tool that is powered by the widely used machine learning package Weka. The software provides a user-friendly graphical interface along with an automated parameter search capability. It employs two robust and popular machine learning methods: artifcial neural networks and support vector machines. This chapter describes the practical usage of AutoWeka and relevant tools in the development of predictive QSAR/QSPR models. Availability: The software is freely available at http://www.mt.mahidol.ac.th/autoweka.en_US
dc.identifier.citationMethods in Molecular Biology. Vol.1260, (2015), 119-147en_US
dc.identifier.doi10.1007/978-1-4939-2239-0_8en_US
dc.identifier.issn10643745en_US
dc.identifier.other2-s2.0-84917706468en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/35511
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84917706468&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleAutoweka: Toward an automated data mining software for qsar and qspr studiesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84917706468&origin=inwarden_US

Files

Collections