Publication:
A note on the rate of convergence of poles of generalized hermite-padé approximants

dc.contributor.authorNattapong Bosuwanen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-06-02T04:52:28Z
dc.date.available2020-06-02T04:52:28Z
dc.date.issued2020-01-01en_US
dc.description.abstract© 2020 by the Mathematical Association of Thailand. We consider row sequences of three generalized Hermite-Padé approximations (orthogonal Hermite-Padé approximation, Hermite-Padé-Faber approximation, and multipoint Hermite-Padé approximation) of a vector of the approximated functions F and prove that if F has a system pole of order v, then such system pole attracts at least v zeros of denominators of these approximants at the rate of a geometric progression. Moreover, the rates of these attractions are estimated.en_US
dc.identifier.citationThai Journal of Mathematics. Vol.2020, No.Special Issue (2020), 25-37en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85084457186en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/56226
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084457186&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleA note on the rate of convergence of poles of generalized hermite-padé approximantsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084457186&origin=inwarden_US

Files

Collections