Publication: A note on the rate of convergence of poles of generalized hermite-padé approximants
dc.contributor.author | Nattapong Bosuwan | en_US |
dc.contributor.other | South Carolina Commission on Higher Education | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.date.accessioned | 2020-06-02T04:52:28Z | |
dc.date.available | 2020-06-02T04:52:28Z | |
dc.date.issued | 2020-01-01 | en_US |
dc.description.abstract | © 2020 by the Mathematical Association of Thailand. We consider row sequences of three generalized Hermite-Padé approximations (orthogonal Hermite-Padé approximation, Hermite-Padé-Faber approximation, and multipoint Hermite-Padé approximation) of a vector of the approximated functions F and prove that if F has a system pole of order v, then such system pole attracts at least v zeros of denominators of these approximants at the rate of a geometric progression. Moreover, the rates of these attractions are estimated. | en_US |
dc.identifier.citation | Thai Journal of Mathematics. Vol.2020, No.Special Issue (2020), 25-37 | en_US |
dc.identifier.issn | 16860209 | en_US |
dc.identifier.other | 2-s2.0-85084457186 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/56226 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084457186&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | A note on the rate of convergence of poles of generalized hermite-padé approximants | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084457186&origin=inward | en_US |