Publication:
Determining system poles using row sequences of orthogonal Hermite–Padé approximants

dc.contributor.authorN. Bosuwanen_US
dc.contributor.authorG. López Lagomasinoen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUniversidad Carlos III de Madriden_US
dc.date.accessioned2019-08-23T11:30:17Z
dc.date.available2019-08-23T11:30:17Z
dc.date.issued2018-07-01en_US
dc.description.abstract© 2018 Elsevier Inc. Given a system of functions F=(F1,…,Fd), analytic on a neighborhood of some compact subset E of the complex plane with simply connected complement in the extended complex plane, we define a sequence of vector rational functions with common denominator in terms of the orthogonal expansions of the components Fi,i=1,…,d, with respect to a sequence of orthonormal polynomials associated with a measure μ whose support is contained in E. Such sequences of vector rational functions resemble row sequences of type II Hermite–Padé approximants. Under appropriate assumptions on μ, we give necessary and sufficient conditions for the convergence with geometric rate of the common denominators of the sequence of vector rational functions so constructed. The exact rate of convergence of these denominators is provided and the rate of convergence of the simultaneous approximants is estimated. It is shown that the common denominators of the approximants detect the location of the poles of the system of functions.en_US
dc.identifier.citationJournal of Approximation Theory. Vol.231, (2018), 15-40en_US
dc.identifier.doi10.1016/j.jat.2018.04.005en_US
dc.identifier.issn10960430en_US
dc.identifier.issn00219045en_US
dc.identifier.other2-s2.0-85046786574en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/46103
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046786574&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleDetermining system poles using row sequences of orthogonal Hermite–Padé approximantsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046786574&origin=inwarden_US

Files

Collections