Publication: Two host gut-derived lactic acid bacteria activate the proPO system and increase resistance to an AHPND-causing strain of Vibrio parahaemolyticus in the shrimp Litopenaeus vannamei
Issued Date
2018-12-01
Resource Type
ISSN
18790089
0145305X
0145305X
Other identifier(s)
2-s2.0-85053081646
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Developmental and Comparative Immunology. Vol.89, (2018), 54-65
Suggested Citation
Sudarat Chomwong, Walaiporn Charoensapsri, Piti Amparyup, Anchalee Tassanakajon Two host gut-derived lactic acid bacteria activate the proPO system and increase resistance to an AHPND-causing strain of Vibrio parahaemolyticus in the shrimp Litopenaeus vannamei. Developmental and Comparative Immunology. Vol.89, (2018), 54-65. doi:10.1016/j.dci.2018.08.002 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/44974
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Two host gut-derived lactic acid bacteria activate the proPO system and increase resistance to an AHPND-causing strain of Vibrio parahaemolyticus in the shrimp Litopenaeus vannamei
Abstract
© 2018 Elsevier Ltd Lactic acid bacteria (LAB) are group of beneficial bacteria that have been proposed as relevant probiotics with immunomodulatory functions. In this study, we initially isolated and identified host-derived LAB from the gut of the Pacific white shrimp Litopenaeus vannamei. Analysis of the bacterial 16S rRNA gene sequence revealed two candidate LAB, the Lactobacillus plantarum strain SGLAB01 and the Lactococcus lactis strain SGLAB02, which exhibited 99% identity to the L. plantarum strain LB1-2 and the L. lactis strain R-53658, which were isolated from bee gut, respectively. The two LAB displayed antimicrobial activities against gram-positive and gram-negative bacteria, including the virulent acute hepatopancreatic necrosis disease (AHPND)-causing strain of Vibrio parahaemolyticus (VPAHPND). Viable colony count and SEM analysis showed that the two candidate LAB, administered via oral route as feed supplement, could reside and adhere in the shrimp gut. Double-stranded RNA-mediated gene silencing of LvproPO1 and LvproPO2 revealed a significant role of two LvproPOs in the proPO system as well as in the immune response against VPAHPND infection in L. vannamei shrimp. The effect of LAB supplementation on modulation of the shrimp proPO system was investigated in vivo, and the results showed that administration of the two candidate LAB significantly increased hemolymph PO activity, the relative mRNA expression of LvproPO1 and LvproPO2, and resistance to VPAHPND infection. These findings suggest that administration of L. plantarum and L. lactis could modulate the immune system and increase shrimp resistance to VPAHPND infection presumably via upregulation of the two LvproPO transcripts.