Publication:
Robust Stabilization of Delayed Neural Networks: Dissipativity-Learning Approach

dc.contributor.authorRamasamy Saravanakumaren_US
dc.contributor.authorHyung Soo Kangen_US
dc.contributor.authorChoon Ki Ahnen_US
dc.contributor.authorXiaojie Suen_US
dc.contributor.authorHamid Reza Karimien_US
dc.contributor.otherChongqing Universityen_US
dc.contributor.otherPolitecnico di Milanoen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherKunsan National Universityen_US
dc.contributor.otherKorea Universityen_US
dc.date.accessioned2020-01-27T08:20:55Z
dc.date.available2020-01-27T08:20:55Z
dc.date.issued2019-03-01en_US
dc.description.abstract© 2012 IEEE. This paper examines the robust stabilization problem of continuous-time delayed neural networks via the dissipativity-learning approach. A new learning algorithm is established to guarantee the asymptotic stability as well as the (Q,S,R) - α -dissipativity of the considered neural networks. The developed result encompasses some existing results, such as H ∞ and passivity performances, in a unified framework. With the introduction of a Lyapunov-Krasovskii functional together with the Legendre polynomial, a novel delay-dependent linear matrix inequality (LMI) condition and a learning algorithm for robust stabilization are presented. Demonstrative examples are given to show the usefulness of the established learning algorithm.en_US
dc.identifier.citationIEEE Transactions on Neural Networks and Learning Systems. Vol.30, No.3 (2019), 913-922en_US
dc.identifier.doi10.1109/TNNLS.2018.2852807en_US
dc.identifier.issn21622388en_US
dc.identifier.issn2162237Xen_US
dc.identifier.other2-s2.0-85050997468en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/50642
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050997468&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleRobust Stabilization of Delayed Neural Networks: Dissipativity-Learning Approachen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050997468&origin=inwarden_US

Files

Collections