Publication: Robust Stabilization of Delayed Neural Networks: Dissipativity-Learning Approach
dc.contributor.author | Ramasamy Saravanakumar | en_US |
dc.contributor.author | Hyung Soo Kang | en_US |
dc.contributor.author | Choon Ki Ahn | en_US |
dc.contributor.author | Xiaojie Su | en_US |
dc.contributor.author | Hamid Reza Karimi | en_US |
dc.contributor.other | Chongqing University | en_US |
dc.contributor.other | Politecnico di Milano | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Kunsan National University | en_US |
dc.contributor.other | Korea University | en_US |
dc.date.accessioned | 2020-01-27T08:20:55Z | |
dc.date.available | 2020-01-27T08:20:55Z | |
dc.date.issued | 2019-03-01 | en_US |
dc.description.abstract | © 2012 IEEE. This paper examines the robust stabilization problem of continuous-time delayed neural networks via the dissipativity-learning approach. A new learning algorithm is established to guarantee the asymptotic stability as well as the (Q,S,R) - α -dissipativity of the considered neural networks. The developed result encompasses some existing results, such as H ∞ and passivity performances, in a unified framework. With the introduction of a Lyapunov-Krasovskii functional together with the Legendre polynomial, a novel delay-dependent linear matrix inequality (LMI) condition and a learning algorithm for robust stabilization are presented. Demonstrative examples are given to show the usefulness of the established learning algorithm. | en_US |
dc.identifier.citation | IEEE Transactions on Neural Networks and Learning Systems. Vol.30, No.3 (2019), 913-922 | en_US |
dc.identifier.doi | 10.1109/TNNLS.2018.2852807 | en_US |
dc.identifier.issn | 21622388 | en_US |
dc.identifier.issn | 2162237X | en_US |
dc.identifier.other | 2-s2.0-85050997468 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/50642 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050997468&origin=inward | en_US |
dc.subject | Computer Science | en_US |
dc.title | Robust Stabilization of Delayed Neural Networks: Dissipativity-Learning Approach | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050997468&origin=inward | en_US |