Publication:
Applying multivariate data analysis to identify key parameters of bi-directional attack flows

dc.contributor.authorKorakoch Wilailuxen_US
dc.contributor.authorSudsanguan Ngamsuriyarojen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-11-23T10:01:42Z
dc.date.available2018-11-23T10:01:42Z
dc.date.issued2015-01-01en_US
dc.description.abstract© 2015 IEEE. Flow export data has been intensively used in anomaly-based intrusion detection systems; however, we have limited understanding of the characteristics of bi-directional flow parameters with respect to the types of network attacks. To recognize the relationship between traffic parameters, we propose an empirical model which analyzes synthetically generated five network attacks within a closed environment, and perform exploratory data analysis using principal component analysis. The experimental results have identified relevant key parameters for selecting good candidates for intrusion detection analysis. The analysis capabilities of bi-directional flow parameters and their characteristics persisting in selected attacks have been diagnosed and revealed.en_US
dc.identifier.citationACDT 2015 - Proceedings: The 1st Asian Conference on Defence Technology. (2015)en_US
dc.identifier.doi10.1109/ACDT.2015.7111611en_US
dc.identifier.other2-s2.0-84938150855en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/35823
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84938150855&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleApplying multivariate data analysis to identify key parameters of bi-directional attack flowsen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84938150855&origin=inwarden_US

Files

Collections