Publication:
A functional equation with conjugate means derived from a weighted arithmetic mean

dc.contributor.authorAnnop Sonubonen_US
dc.contributor.authorSomsak Orankitjaroenen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-11-23T10:26:26Z
dc.date.available2018-11-23T10:26:26Z
dc.date.issued2015-01-01en_US
dc.description.abstractIn this paper, we seek a solution of a functional equation with conjugate means derived from a weighted arithmetic mean; that is, finding continuous strictly monotonic functions π{variant} and ψ on an open interval I which is a solution of π{variant}<sup>-1</sup>(pπ{variant}(x)+qπ{variant}(y)+(1-p-q)π{variant}(tx+(1-t)y)) +ψ<sup>-1</sup>(rψ(x)+sψ(y)+(1-r-s)ψ(tx+(1-t)y))=x+y, for all x,y ε{lunate} 1 where p,q,r,s,tε{lunate}(0,1),p≠q, r≠s, p+q≠1, r+s≠1, st=r(1-t) with either the conditions p+q=r+s or p+q=2(r+s). We found that the solutions π{variant} and ψ are in the form of linear functions.en_US
dc.identifier.citationMalaysian Journal of Mathematical Sciences. Vol.9, No.1 (2015), 21-31en_US
dc.identifier.issn18238343en_US
dc.identifier.other2-s2.0-84929896153en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/36200
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929896153&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleA functional equation with conjugate means derived from a weighted arithmetic meanen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929896153&origin=inwarden_US

Files

Collections