Publication: A functional equation with conjugate means derived from a weighted arithmetic mean
dc.contributor.author | Annop Sonubon | en_US |
dc.contributor.author | Somsak Orankitjaroen | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.date.accessioned | 2018-11-23T10:26:26Z | |
dc.date.available | 2018-11-23T10:26:26Z | |
dc.date.issued | 2015-01-01 | en_US |
dc.description.abstract | In this paper, we seek a solution of a functional equation with conjugate means derived from a weighted arithmetic mean; that is, finding continuous strictly monotonic functions π{variant} and ψ on an open interval I which is a solution of π{variant}<sup>-1</sup>(pπ{variant}(x)+qπ{variant}(y)+(1-p-q)π{variant}(tx+(1-t)y)) +ψ<sup>-1</sup>(rψ(x)+sψ(y)+(1-r-s)ψ(tx+(1-t)y))=x+y, for all x,y ε{lunate} 1 where p,q,r,s,tε{lunate}(0,1),p≠q, r≠s, p+q≠1, r+s≠1, st=r(1-t) with either the conditions p+q=r+s or p+q=2(r+s). We found that the solutions π{variant} and ψ are in the form of linear functions. | en_US |
dc.identifier.citation | Malaysian Journal of Mathematical Sciences. Vol.9, No.1 (2015), 21-31 | en_US |
dc.identifier.issn | 18238343 | en_US |
dc.identifier.other | 2-s2.0-84929896153 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/36200 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929896153&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | A functional equation with conjugate means derived from a weighted arithmetic mean | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929896153&origin=inward | en_US |